

11th IEEE International Conference on Automatic Face and Gesture Recognition

FG**2015**

Shared Representation Learning for Heterogeneous Face Recognition

Dong Yi, Zhen Lei, Stan Z. Li Center for Biometrics and Security Research Institute of Automation, Chinese Academy of Sciences

Heterogeneous Face Recognition

- Matching face images from different sources
- Sketch vs. VIS (Visual)

forensics and security applications

- NIR (Near Infrared) vs. VIS
 - An alternative way to deal with illumination problem
 - Make NIR system be compatible with legacy VIS face images

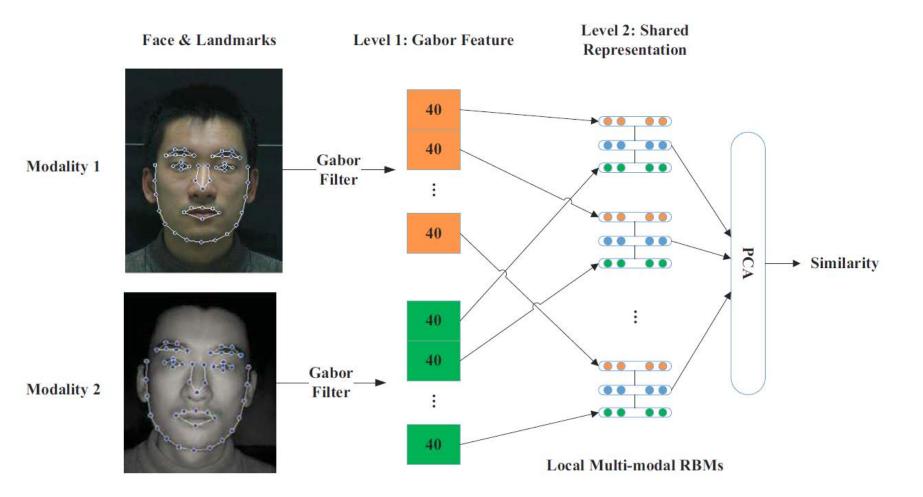
Challenges

- Ordinary VIS-VIS Face recognition is still an unsolved problem
- Nonlinear relation between face images with different modalities
- Limited training samples
- Solution: Multi-modal Restricted Boltzmann Machines (RBMs)

Related Work

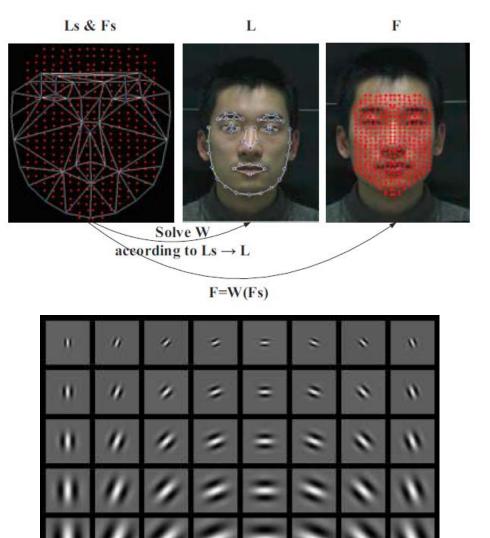
- Synthesis based model
 - Eigen-transformation, CVPR 2002
 - Patch-wise LLE, CVPR 2003
 - Transforming VIS to NIR, ICB 2009
- Discriminative model
 - DoG filter, LBP, HOG, ICB 2009, PAMI 2011
 - Coupled information theoretic encoding, CVPR
 2011
 - Coupled discriminant analysis, TIFS 2012

Our Method



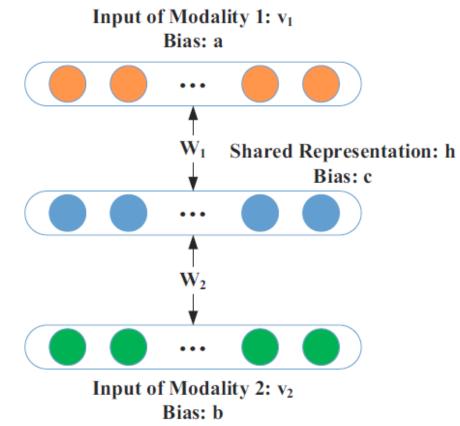
Level 1 Features

- Identity adaptive feature points
 - Localize sparse facial landmarks (48 pts)
 - Generate adaptive feature points by RBF warping (176x2 pts)
- Gabor filtering
 - 5 scales and 8 orientations
- PIE robust local features
 - 176x2x40 dimensions



Level 2 Representations

- Build the relationship between two modalities by multi-modal RBMs
- Train RBM for each feature point
- By using facial symmetry, need train 176 RBMs
- The structure of one RBM is 40-80-40
- Dimension: 176x2x80



Multi-Modal RBM

- The parameters are learned by using meanfield inference and an MCMC procedure
- Generate the hidden (shared) representation
 h by alternating Gibbs sampler

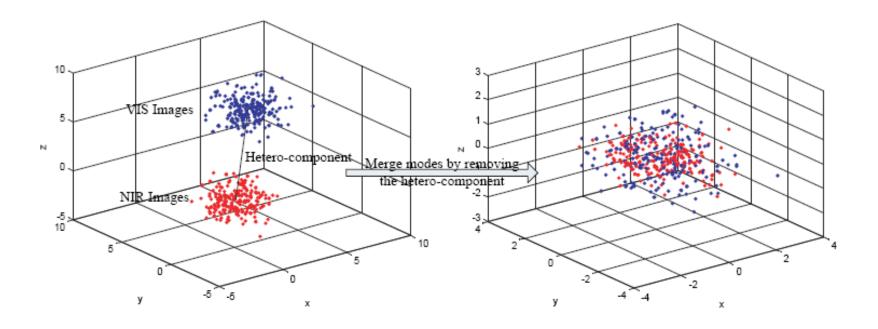
$$E(\hat{\mathbf{v}}_1, \hat{\mathbf{v}}_2, \mathbf{h}; \boldsymbol{\theta}) = \frac{1}{2} (\hat{\mathbf{v}}_1 - \mathbf{a})^T (\hat{\mathbf{v}}_1 - \mathbf{a}) + \frac{1}{2} (\hat{\mathbf{v}}_2 - \mathbf{b})^T (\hat{\mathbf{v}}_2 - \mathbf{b}) - \mathbf{c}^T \mathbf{h} - \hat{\mathbf{v}}_1^T \mathbf{W}_1 \mathbf{h} - \hat{\mathbf{v}}_2^T \mathbf{W}_2 \mathbf{h}$$

,

• Refer: Nitish Srivastava and Ruslan Salakhutdinov. "Multimodal learning with deep boltzmann machines". NIPS , 2012.

Removing Heterogeneous Principle Components

- The correlation factor between the first PC and $h = m_{NIR} m_{VIS}$ is 0.97
- Remove the first several PCs



Experiments

- Take NIR-VIS face recognition as main experiments
 - CASIA HFB dataset
 - CASIA NIR-VIS 2.0 dataset
- Sketch-VIS experiments
 - CUFS dataset
 - CUFSF dataset
- Performance: Rank1 recognition rate and ROC

Datasets Information

Name	Modalities	No. of Subjects	No. of Images	Variations
CASIA HFB	NIR, VIS	202	5097	E, G, D
CASIA NIR-VIS 2.0	NIR, VIS	725	17580	P, E, G, D
CUFS	Sketch, VIS	606	1212	-
CUFSF	Sketch, VIS	1194	2388	-

Datasets used in our experiments. The last column denotes the main variations they addressed, *i.e.*, Pose(P), Expression(E), Eyeglasses(G), Distance(D).

Sample Images

Sample Images

Results on CASIA HFB

RANK1 RECOGNITION RATES AND VR@FAR=0.1% OF VARIOUS METHODS ON VIEW 2 OF CASIA HFB.

	Rank1	VR
Gabor	59.47±6.72%	$33.51 \pm 5.70\%$
Gabor + Remove 20 PCs	$94.87 \pm 1.72\%$	$71.70 \pm 6.42\%$
Gabor + RBM	$98.12 \pm 1.13\%$	$84.50 \pm 3.75\%$
Gabor + RBM + Remove 11 PCs	$99.38 \pm 0.32\%$	$92.25 \pm 1.68\%^{-1}$
NN [12]	88.8%	$48.78 \pm 3.87\%$
SR [12]	93.4%	$77.56 \pm 2.96\%$
NN + SR [12]	92.2%	$79.05 \pm 4.48\%$
Cognitec [12]	93.8%	$85.62 \pm 2.17\%$
NN + SR + Cognitec [12]	97.6%	$93.45 \pm 0.96\%$
C-DFD [15]	92.2%	65.5%
P-RS [14]	-	$95.8 \pm 6.15\%^{-2}$

¹96.33% with z-score normalization

²133 subjects for training, 67 subjects for testing

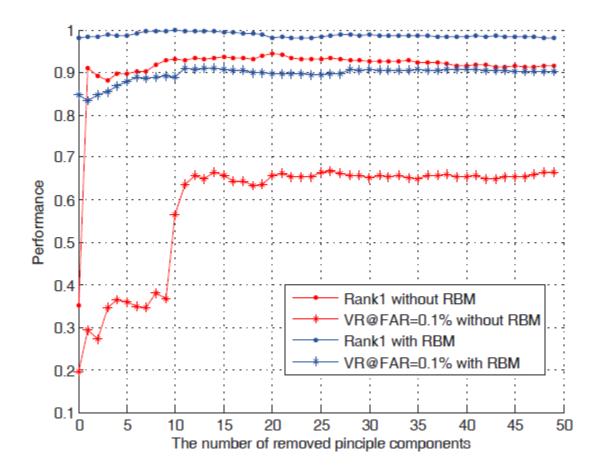
Global, Convolutional and Local RBMs

- Global: fully connected RBM
- Conv: locally connected RBM with shared weights
- Local: locally connected RBM with unshared weights

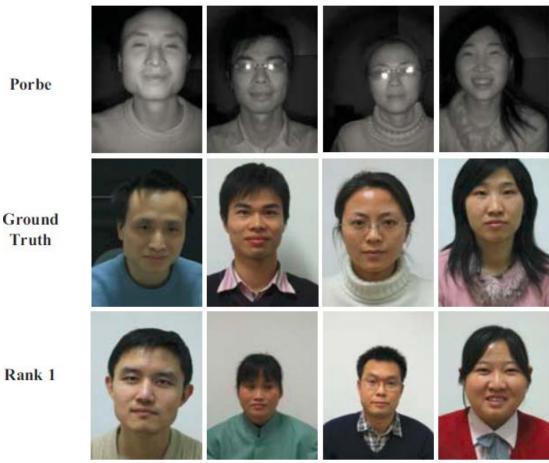
THE COMPARISON OF GLOBAL, CONVOLUTIONAL AND LOCAL RBMS ON VIEW 1 OF CASIA HFB. THE 3RD COLUMN IS VR@FAR=0.1% ON THE TRAINING SET OF VIEW 1. THE 4TH COLUMN IS VR@FAR=0.1% ON THE TESTING SET OF VIEW 1.

	Architecture	VR (Train)	VR (Test)
Global	7040-3520-7040	99.94%	1.549%
Conv.	40-80-40	73.31%	71.79%
Local	176×(40-80-40)	99.45%	90.85%

The Number of Removed PCs



Some Cases of Failure



Results on CASIA NIR-VIS 2.0

RANK1 RECOGNITION RATES AND VR@FAR=0.1% OF VARIOUS METHODS ON VIEW 2 OF CASIA NIR-VIS 2.0.

	Rank1	VR
Gabor	$36.18 \pm 2.56\%$	$33.37 \pm 2.29\%$
Gabor + Remove 20 PCs	$75.54 \pm 0.75\%$	$71.40 \pm 1.21\%$
Gabor + RBM	84.22±0.86%	$78.39 \pm 1.45\%$
Gabor + RBM + Remove 11 PCs	$86.16 \pm 0.98\%$	$81.29 \pm 1.82\%$
PCA + Sym + HCA [18]	$23.7 \pm 1.89\%$	19.27%
Cognitec [5]	$58.56 \pm 1.19\%$	-
DSIFT + LDA [5]	$73.28 \pm 1.10\%$	-

Results on CUFS and CUFSF

- The first method can perform perfectly on CUFS dataset
 - Rank1 = 100%
 - -VR@FAR=0.1% = 100%
- Perform good on CUFSF dataset
 - Rank1 = 98.59%
 - Rank1 = 98.70%, CITE (Coupled information theoretic encoding, CVPR 2011)

Summary

- Proposed a local to global learning framework for heterogeneous face recognition
- The first time to use multi-modal RBMs to learn shared representations of heterogeneous face images
- By plugging the local RBMs into the framework, we obtained the state-of-the-art results for NIR-VIS and Sketch-VIS problems

11th IEEE International Conference on Automatic Face and Gesture Recognition

FG**2015**

Thank you!

Q&A