

Controllable Face Privacy

Terence Sim, Li Zhang

Leading The World With Asia's Best

Existing deidentification methods

Joe, Male, Caucasian, Young

Controllable Privacy Protection

selective alteration

Joe, Male, Caucasian, Young

Orthogonal subspace decomposition

Semantic Faces

input

 $\mathbf{P}r_1^*$

 $\mathbf{P} \mathbf{r}_2^*$

 $\oplus a_2^*$

Semantic Faces

input

Increasing Femininity

Increasing Femininity

 \mathbf{O}

Increasing Femininity

 \mathbf{O}

Growing older

How to learn Semantic Faces?

Multimodal Discriminant Analysis

N=18 Labeled Training images

Gender:Male, FemaleRace:Caucasian, African, OrientalAge:Young, Middle-aged, Old

Data matrix

3. For each mode $i = \{\text{gender, race, age}\}, \text{compute between-class and within-class scatter matrices on : <math>\mathbf{X}$

$$\mathbf{S}_b^i, \; \mathbf{S}_w^i$$

4. Maximize Fisher Criterion

$$\mathbf{J}_{F}(\mathbf{V}^{i}) = \frac{(\mathbf{V}^{i})^{\top} \mathbf{S}_{b}^{i}(\mathbf{V}^{i})}{(\mathbf{V}^{i})^{\top} \mathbf{S}_{w}^{i}(\mathbf{V}^{i})}$$

5. Form matrix $\mathbf{V} = \begin{bmatrix} \mathbf{V}^{gender} \, \mathbf{V}^{race} \, \mathbf{V}^{age} \, \mathbf{V}^{0} \end{bmatrix}$

5. Form matrix $\mathbf{V} = \begin{bmatrix} \mathbf{V}^{gender} \, \mathbf{V}^{race} \, \mathbf{V}^{age} \, \mathbf{V}^{0} \end{bmatrix}$ Residual Space

- V is an (N-1) X (N-1) orthogonal matrix, whose columns are the bases for the gender (1-dim), race (2-dim) and age (2dim) subspaces.
- These subspaces capture the variations of gender, race and age, respectively.
- Residual space is 12-dim, and captures facial identity.

Semantic Faces

input

 $\mathbf{P}r_1^*$

 $\mathbf{P} \mathbf{r}_2^*$

 $\oplus a_2^*$

7. Synthesis $\mathbf{x}' = \mathbf{P}_r \mathbf{y}' = \mathbf{Q} \mathbf{y}'$

This equation allows the synthesis of new faces.

$\mathbf{P}_r = \mathbf{U}\mathbf{D}^{1/2}$

Undoes the whitening operation

Visualizing Q

Taking appropriate linear combinations of these Semantic Faces will alter gender, race, age, and identity.

Algorithm overview

Face normalization & encoding

Results

Altering 2 attributes Original 1.0 2.0

Gender + Age

Race + Gender

Altering 3 attributes

Original 1.0 2.0

Gender + Race + Age

Altering Identity irreversibly

But can we fool vision algorithms?

Change Detector

Gender Change Detector

Experiments: Single-attribute change

"Changed rates" of 3 Change Detectors

	Intensity σ	0.5	1.0	1.5	2.0	2.5
Gender Change	Gender CD	0.50	0.63	0.75	0.88	1.00
	Race CD	0.31	0.31	0.31	0.31	0.31
	Age CD	0.56	0.19	0.38	0.38	0.19
Race Change	Gender CD	0.38	0.31	0.44	0.38	0.31
	Race CD	0.57	0.64	0.70	0.76	0.89
	Age CD	0.19	0.19	0.47	0.66	0.28
Age Change	Gender CD	0.31	0.38	0.31	0.38	0.19
	Race CD	0.25	0.25	0.12	0.12	0.25
	Age CD	0.66	0.84	1.00	1.00	1.00

Altered attributes are detected as changed, while unaltered attributes are unchanged

Experiments: Multi-attribute change

"Changed rates" of 3 Change Detectors

	Gender+Race		Gender+Age		Race+Age			All 3 attributes				
Intensity σ	Gender	Race	Age	Gender	Race	Age	Gender	Race	Age	Gender	Race	Age
1.0	0.45	0.52	0.23	0.55	0.26	0.71	0.39	0.54	0.77	0.36	0.47	0.72
2.0	0.60	0.60	0.68	0.53	0.25	0.82	0.33	0.72	0.88	0.50	0.71	0.82

Higher intensity needed to fool detectors. Age attribute affected.

Experiments: Identity change

Confidence values returned by Face++

Intensity σ	0.5	1.0	1.5	2.0
Average Confidence	0.9137	0.943	0.951	0.966

Fun results

Fun results

Conclusion

The End: but come see our demo!

Additional slides

$$\beta = \frac{\alpha - f_p}{t_p - f_p}$$

- α : observed "changed rate"
- β : actual "changed rate"
- f_p : false positive rate
- t_p : true positive rate