Group-level Arousal and Valence Recognition in Static Images: Face, Body and Context

Wenxuan Mou, Oya Celiktutan, Hatice Gunes

Queen Mary University of London, UK

Motivation

Related works

From individual emotion to group emotion

- Group Happiness Intensity (Dhall et al. 2012)

\mathbb{M}

Related works

	Data	Features	Classifier	Categories	No of Labelers
Dhall et.al	417 images	Face -Facial action unit -PHOG+LPQ Scene context	Multiple kernel learning	Valence Positive, neutral, negative	3/image
Ours	250	Face images -Geometric -Local Appearance	KNN	Arousal High, medium, low Valence Positive, neutral, negative	15/image
		-Global Appearance Body HOG Context			

Our requirements

- Various emotions in the whole database
- A group of people on each image

Existing databases

- Static Facial Expressions in the Wild (SFEW)[1]
- Various emotions
- Single person
- Annotated Face in the Wild(AFW)[2]
- Multiple people
- No various emotions, 90\% happy, no emotion annotation
- HAPpy PEople Images (HAPPEI) [3]
- Multiple people
- All are happy
[1] Dhall, et al. "Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark." 2011.
[2] Zhu, et al"Face detection, pose estimation, and landmark localization in the wild.", 2012.
[3] Dhall, et al. Finding happiest moments in a social context, ACCV 2012.

Data Collection and Annotation

Our database

- Collected images from Internet
- Each image was annotated by 15 raters along Arousal-Valence

Data Collection and Annotation

Our database

- Collected images from Internet
- Each image was annotated by 15 raters along Arousal-Valence

Data Collection and Annotation

Annotation questionnaire

Valence

- Positive
- Neutral
- Negative

Activity

- High
- Medium
- Low

Data Collection and Annotation

Annotation questionnaire

Valence

- Positive
- Neutral
- Negative

Activity

- High
- Medium

Low

Inter-rater agreement

	Cronbach's α
Arousal	0.85
Valence	0.96

Theories for group emotion

Top-down

- group-as-a-whole
- use group-level information

Bottom-up

- group-as-sum-of-its-parts
- start with individuals

Our Methodology

Feature Extraction

Feature Extraction

Face

Feature Extraction

 University of London
Global

Appearance
(Quantised Local
Zernike Moment [1])

Local

Geometric

(11 distances[2]: eye state, mouth state)
[1] Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
[2] Akakın, et al. "Robust classification of face and head gestures in video." 2011.

Feature Extraction

University of London

Global

Local

[1] Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
[2] Akakın, et al. "Robust classification of face and head gestures in video." 2011.

Feature Extraction

University of London

Global

Local

[1] Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
[2] Akakın, et al. "Robust classification of face and head gestures in video." 2011.

Feature Extraction

Queen Mary University of London

Feature Extraction

Upper Body Detection

[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, 2007.

Feature Extraction

 University of London
[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, 2007.

Feature Extraction

Upper Body Detection

[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." Proceedings of the 6th ACM international conference on Image and video retrieval. ACM, 2007.

Histogram of Oriented Gradients[1]

Feature Extraction

(0) Henct

1. Bodies' relative scale and location w.r.t bounding box
2. Bounding box's relative scale and location w.r.t Image

Feature Extraction

(0) Henct

1. Bodies' relative scale and location w.r.t bounding box
2. Bounding box's relative scale and location w.r.t Image

Experiment and Analysis

Representation divided images into 3 groups based on number of faces, 2 faces, $\mathbf{3}$ faces and $\mathbf{4}$-more faces.

Classifier K-Nearest Neighbor

Experiment and Analysis

Representation divided images into 3 groups based on number of faces, 2 faces, $\mathbf{3}$ faces and $\mathbf{4}$-more faces.

Classifier K-Nearest Neighbor

Combine Two Dimensions

Experiment and Analysis

Experiment I : Different features independently

Faces / \%	2 faces		3 faces		>= 4 faces		Mean	
	valence	arousal	valence	arousal	valence	arousal	valence	arousal
Geometric	63	56	48	55	48	49	53	53
Global QLZM	53	57	46	40	44	52	47	49
Part QLZM	37	33	69	61	28	43	44	45
Context	39	35	30	33	44	35	37	34
Body HOG	38	23	33	35	37	38	35	32

Experiment and Analysis

Experiment II : Pairwise features decision fusion
V: valence A: Arousal

Geom etric	Global QLZM	Local QLZM	Cont ext	Body HOG	2 faces / \%		3 faces/ \%		$\begin{aligned} & >=4 \text { faces } \\ & / \% \end{aligned}$		Mean / \%	
Face features					V	A	V	A	V	A	V	A
\checkmark	\checkmark				55	57	43	57	51	52	49	55
\checkmark		v			51	47	56	59	41	47	49	51
\checkmark			v		43	40	53	53	43	49	46	47
V				v	46	44	46	62	46	45	46	50
	V		v		39	36	38	33	51	33	42	34
	v			V	40	32	41	35	46	40	42	35
		\checkmark	v		36	30	33	31	53	40	40	33
		\checkmark		V	39	32	41	38	38	43	39	37
			V	v	31	40	33	31	43	35	35	35
	v	v			40	44	56	53	41	56	45	51

Experiment and Analysis

Experiment III: All features with decision fusion
V: valence A: Arousal

Face features	Conte xt	Body HOG	2 faces / \%		$3 \text { faces }$/ \%		$\begin{aligned} & >=4 \text { faces } \\ & / \% \end{aligned}$		Mean/ \%	
			V	A	V	A	V	A	V	A
V			47	51	53	51	44	54	48	52
V	v		47	44	48	57	57	59	50	53
v		v	55	49	56	46	48	56	53	50
V	v	v	45	40	58	64	60	50	54	51

Face features: geometric, local appearance, global appearance

Experiment and Analysis

Experiment results IV: Combined Dimension

Face features	Context	Body HOG	$\mathbf{2}$ faces / \%	$\mathbf{3}$ faces \%	> / \%	Mean / \%
V			28.33	40	31.11	33.15
	V		21.6	8	20	16.53
		V	18.33	20	26.67	21.67
V	V		31.67	40	44.44	38.70
V		V	28.33	56	35.56	39.96
V	V	V	28.33	44	35.56	35.96

V: valence A: Arousal
Face features: geometric, local appearance, global appearance

Representative Results

Representative Results

Representative Results

 University of London

Conclusion and Future Work

Conclusion

1. A new database for group emotion detection
2. Automatic group emotion detection along Arousal and Valence dimensions
3. A context feature and body-HOG feature used for group emotion detection

Conclusion and Future Work

Conclusion

1. A new database for group emotion detection
2. Automatic group emotion detection along Arousal and Valence dimensions
3. A context feature and body-HOG feature used for group emotion detection

Future work

1. Feature selection before fusion and classification
2. Experiment with more sophisticated classifiers
3. Test on a larger database

Thank you!

Questions?

