

Group-level Arousal and Valence Recognition in Static Images: Face, Body and Context

Wenxuan Mou, Oya Celiktutan, Hatice Gunes

Queen Mary University of London, UK

Motivation

Related works

From individual emotion to group emotion

- Group Happiness Intensity (Dhall et al. 2012)

	Data	Features	Classifier	Categories	No of Labelers
Dhall et.al FG'15	417 images	Face -Facial action unit -PHOG+LPQ Scene context	Multiple kernel learning	Valence Positive, neutral, negative	3/image
Ours	250 images	Face -Geometric -Local Appearance -Global Appearance Body HOG Context	KNN	Arousal High, medium, low Valence Positive, neutral, negative	15/image

Our requirements

- Various emotions in the whole database
- A group of people on each image

Existing databases

- Static Facial Expressions in the Wild (SFEW)[1]
 - Various emotions
 - Single person
- Annotated Face in the Wild(AFW)[2]
 - Multiple people
 - No various emotions, 90% happy, no emotion annotation
- HAPpy PEople Images (HAPPEI) [3]
 - Multiple people
 - All are happy

[1] Dhall, et al. "Static facial expression analysis in tough conditions: Data, evaluation protocol and benchmark." 2011.
[2] Zhu, et al"Face detection, pose estimation, and landmark localization in the wild.", 2012.
[3] Dhall, et al. Finding happiest moments in a social context, ACCV 2012.

Our database

- Collected images from Internet
- Each image was annotated by 15 raters along Arousal-Valence

Our database

- Collected images from Internet
- Each image was annotated by 15 raters along Arousal-Valence

Annotation questionnaire

Valence

- Positive
- Neutral
- Negative

Activity

- High
- Medium
- Low

Annotation questionnaire

Valence

- Positive
- Neutral
- Negative

Activity

- High
- Medium
- Low

Inter-rater agreement

	Cronbach's α
Arousal	0.85
Valence	0.96

Top-down

- group-as-a-whole
- use group-level information

Bottom-up

- group-as-sum-of-its-parts
- start with individuals

Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
Akakın, et al. "Robust classification of face and head gestures in video." 2011.

Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
Akakın, et al. "Robust classification of face and head gestures in video." 2011.

Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.
Akakın, et al. "Robust classification of face and head gestures in video." 2011.

[1] Sariyanidi, et al. "Local Zernike Moment Representation for Facial Affect Recognition." 2013.[2] Akakın, et al. "Robust classification of face and head gestures in video." 2011.

[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." *Proceedings of the 6th ACM international conference on Image and video retrieval*. ACM, 2007.

[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." *Proceedings of the 6th ACM international conference on Image and video retrieval*. ACM, 2007.

[1] Bosch, et al. "Representing shape with a spatial pyramid kernel." *Proceedings of the 6th ACM international conference on Image and video retrieval*. ACM, 2007.

Context

- 1. Bodies' relative scale and location w.r.t bounding box
- 2. Bounding box's relative scale and location w.r.t Image

Context

- 1. Bodies' relative scale and location w.r.t bounding box
- 2. Bounding box's relative scale and location w.r.t Image

Representation divided images into 3 groups based on number of faces,2 faces, 3 faces and 4-more faces.

Classifier K-Nearest Neighbor

13

Experiment and Analysis

Experiment I : Different features independently

Faces / %	2 faces		3 faces		>= 4 faces		Mean	
	valence	arousal	valence	arousal	valence	arousal	valence	arousal
Geometric	63	56	48	55	48	49	53	53
Global QLZM	53	57	46	40	44	52	47	49
Part QLZM	37	33	69	61	28	43	44	45
Context	39	35	30	33	44	35	37	34
Body HOG	38	23	33	35	37	38	35	32

Experiment II: Pairwise features decision fusion

V: valence A: Arousal

Geom	Global	Local	Cont	Body	2 face	es	3 face	es	>=4fa	aces	Mea	in
etric	QLZM	QLZM	ext	HOG	/ %		/ %		/ %		/ %	
Face features				V	А	V	А	V	А	V	А	
٧	V				55	57	43	57	51	52	49	55
V		V			51	47	56	59	41	47	49	51
٧			V		43	40	53	53	43	49	46	47
٧				V	46	44	46	62	46	45	46	50
	V		V		39	36	38	33	51	33	42	34
	V			\checkmark	40	32	41	35	46	40	42	35
		V	V		36	30	33	31	53	40	40	33
		V		V	39	32	41	38	38	43	39	37
			V	V	31	40	33	31	43	35	35	35
	V	V			40	44	56	53	41	56	45	51

Experiment III : All features with decision fusion

V: valence A: Arousal

Face features	Conte xt	Body HOG	2 faces / %		3 faces / %		>=4faces / %		Mean / %	
			V	А	V	A	V	A	V	А
V			47	51	53	51	44	54	48	52
V	V		47	44	48	57	57	59	50	53
V		V	55	49	56	46	48	56	53	50
V	V	V	45	40	58	64	60	50	54	51

Face features: geometric, local appearance, global appearance

Experiment results IV: Combined Dimension

Face features	Context	Body HOG	2 faces / %	3 faces / %	>=4faces /%	Mean / %
V			28.33	40	31.11	33.15
	٧		21.6	8	20	16.53
		V	18.33	20	26.67	21.67
V	٧		31.67	40	44.44	38.70
٧		V	28.33	56	35.56	39.96
٧	V	V	28.33	44	35.56	35.96

V: valence A: Arousal

Face features: geometric, local appearance, global appearance

Representative Results

Representative Results

Representative Results

Queen Mary

Conclusion

- 1. A new database for group emotion detection
- 2. Automatic group emotion detection along Arousal and Valence dimensions
- 3. A context feature and body-HOG feature used for group emotion detection

Conclusion

- 1. A new database for group emotion detection
- 2. Automatic group emotion detection along Arousal and Valence dimensions
- 3. A context feature and body-HOG feature used for group emotion detection

Future work

- 1. Feature selection before fusion and classification
- 2. Experiment with more sophisticated classifiers
- 3. Test on a larger database

Thank you! Questions?

