Third International Workshop on Context Based Affect Recognition CBAR 2015

# Person-specific behavioural features for automatic stress detection

Jonathan Aigrain - Séverine Dubuisson Marcin Detyniecki - Mohamed Chetouani



May 4, 2015



Understanding nonverbal cues and social signals is one of the key elements in human-human interaction

- Nonverbal communication conveys an important part of the meaning
- Interpretation of these signals is person and context dependent

**Context**: stressful situations **Objective**: Automatically detect stress in an unobtrusive way by studying the body language

# Stress definition

Definition proposed by Lazarus [4] with the conditions regarding the stimulus proposed by Koolhaas et al. [3]

- Stress is the result of a transaction between a person and her environment
- This transaction includes:
  - A stimulus considered as uncontrollable and/or unpredictable
  - An evaluation of the situation and the conclusion of the presence of a threat
  - Coping processes
  - Several effects on mind and body

# Related works

Automatic stress detection techniques are mainly using:

- Speech signals
- Physiological signals

Few works address stress detection using body language:

- Giakoumis et al.[2] enhanced the performance of stress detection systems with behavioural features
- Soury [7] used postural features in a multimodal fusion model
- Lefter [5] used visual features such as HOG and HOF to predict intermediate level variables, which are then used to predict stress

a collection

Feature extraction

Person-specific normalization

Stress detect

Conclusions

# Presentation outline

- Data collection
- Feature extraction
- Person-specific normalization
- Stress detection
- Conclusions

Person-specific behavioural features for automatic stress detection

# Data collection

According to Dickerson and Kemeny [1], there are 4 main classes of stressors:

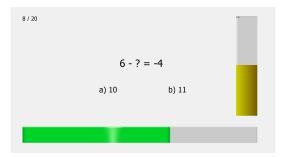
- Cognitive tasks
- Public speaking
- Noise exposure
- Emotion induction •

Experiments which combine public speaking and cognitive tasks are considered the most effective

# Stress induction procedure

The experiment used is an evaluated time-constrained mental arithmetic test:

- 6 steps of increasing difficulty
- Performed in front of two people
- Biased performance feedback



Conclusions

# Acquired data

For each of the 14 partipants, for each of the 6 steps:

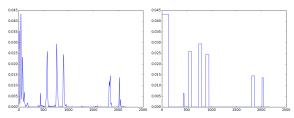
- Video of the whole body in  $640 \times 480$  from the Kinect
- Skeleton from the Kinect
- Video of the face in 1440  $\times$  1080 from the HD camera
- Self-assessed stress level using a Likert-scale (1-5)



# Feature extraction

### Body language features

- Quantity of Movement
  - Computed from the skeleton and from the image
  - Skeleton QoM computed for the head
  - FFT applied on the image QoM, divided in 10 bins
- Detection of periods of high activity
  - Using the peaks of the QoM



## Feature extraction

#### Body language features

• Detection of posture changes



- Detection of self-touching
  - Self-touching in the region of the head
  - Fingers rubbing



#### 25 features

Person-specific behavioural features for automatic stress detection

# Feature extraction

#### Facial features

- Activation level of 12 Action Units
  - AU are presented by Ekman in the Facial Action Coding System
  - Extracted using the method of Nicolle et al. [6]
  - Average and standard deviation used as features

24 features

#### Conclusions

# Person-specific normalization

Objective : Reducing the impact of interindividual differences Hypothesis : Stress is easier to detect if we look at the evolution of one's behaviour

$$\tilde{f_{ps}} = \frac{f_{ps} - f_{p1}}{f_{p1}}$$

with  $f_{ps}$  the vector of features for the person p on step s and  $\tilde{f_{pj}}$  the normalized vector

# Evaluation process

- Classification using SVM with three kernel functions
  - Linear
  - Radial Basis Function
  - Polynomial
- Each video is associated with a label
  - Stress (S) if self-assessed stress level > 3
  - Non-Stress (NS) otherwise
- Leave-One-Subject-Out cross-validation
- Mean accuracy over 10 runs



| kernel type | raw                    | normalized  |
|-------------|------------------------|-------------|
| Poly        | 0.64 ± 0.04            | 0.77 ± 0.02 |
| RBF         | 0.65 ± 0.03            | 0.76 ± 0.02 |
| Linear      | $0.67\pm\textit{0.01}$ | 0.77 ± 0.01 |

- No significant difference between the 3 kernel functions
- Person-specific normalization improves accuracy:
  - Poly: +20%
  - RBF: +17%
  - Linear: +15%

# Impact of the features set

| features set | raw         | normalized  |
|--------------|-------------|-------------|
| All          | 0.67 ± 0.01 | 0.77 ± 0.01 |
| Face         | 0.68 ± 0.01 | 0.65 ± 0.03 |
| Body         | 0.63 ± 0.03 | 0.80 ± 0.01 |

- Results obtained with the linear kernel
- Person-specific normalization effective only on body features (+27%)
- Raw facial features give better results than raw body features
  - May be explained by less interindividual differences in facial expression

# Performances of individual features

- Classification obtained with only one feature
- SVM with RBF kernel function
  - Allows several "split values" along the feature axis
- Leave-One-Subject-Out cross-validation
- Mean accuracy over 10 runs
- 5 best and 5 worst features are presented

Person-specific normalization

# Performances of individual raw features

| feature     | accuracy    |
|-------------|-------------|
| PCC         | 0.73 ± 0.02 |
| AU9 - std   | 0.72 ± 0.01 |
| FFT2        | 0.72 ± 0.01 |
| AU4 - std   | 0.72 ± 0.01 |
| AU4 - mean  | 0.72 ± 0.01 |
| AU25 - mean | 0.60 ± 0.03 |
| RHM         | 0.58 ± 0.01 |
| AU5 - std   | 0.58 ± 0.02 |
| AU9 - mean  | 0.56 ± 0.01 |
| HAPMD       | 0.55 ± 0.04 |

- Better performances than the whole set of features (67%)
- Good results for posture changes (PCC) and brows activity (AU4 and AU9)
- Difficult to interpret what FFT2 means

# Performances of individual normalized features

| feature     | accuracy    |
|-------------|-------------|
| FFT1        | 0.76 ± 0.02 |
| HAPC        | 0.74 ± 0.01 |
| FFT7        | 0.73 ± 0.02 |
| HAPMV       | 0.73 ± 0.02 |
| PCC         | 0.73 ± 0.02 |
| AU1 - std   | 0.49 ± 0.03 |
| AU25 - mean | 0.46 ± 0.02 |
| AU26 - mean | 0.45 ± 0.02 |
| AU15 - mean | 0.45 ± 0.03 |
| AU17 - std  | 0.43 ± 0.04 |

- Similar performances than the whole set of features (77%)
- Normalization effective only on body features
- Good results for body activity (FFT1), periods of high activity (HAPC and HAPMV) and posture changes (PCC)
- Difficult to interpret what FFT7 means

# Conclusions and possible improvements

### Conclusions

- Unobtrusive solution for stress detection
- Person-specific normalization effective only on body language features
- Using only one feature can provide good classification accuracy
  - 73% for number of posture changes
  - 76% for normalized 1st bin of the FFT

#### Improvements

- Feature selection
- Using normalized body features and raw facial features

# Thank you for your attention!

Person-specific behavioural features for automatic stress detection

# Bibliography

- S. S. Dickerson and M. E. Kemeny. Acute stressors and cortisol responses: a theoretical integration and synthesis of laboratory research. *Psychological bulletin*, 130(3):355–91, May 2004.
- D. Giakoumis, A. Drosou, P. Cipresso, D. Tzovaras, G. Hassapis, A. Gaggioli, and G. Riva. Using activity-related behavioural features towards more effective automatic stress detection. *PloS one*, 7(9):e43571, Jan. 2012.
- J. M. Koolhaas, a. Bartolomucci, B. Buwalda, S. F. de Boer, G. Flügge, S. M. Korte, P. Meerlo, R. Murison, B. Olivier, P. Palanza, G. Richter-Levin, a. Sgoifo, T. Steimer, O. Stiedl, G. van Dijk, M. Wöhr, and E. Fuchs. Stress revisited: a critical evaluation of the stress concept. *Neuroscience and biobehavioral reviews*, 35(5):1291–301, Apr. 2011.
- R. S. Lazarus. From psychological stress to the emotions: a history of changing outlooks. Annual review of psychology, 44:1–21, Jan. 1993.
- I. Lefter. Multimodal surveillance - Behavior analysis for recognizing stress and aggression. PhD thesis, 2014.
- J. Nicolle, K. Bailly, and M. Chetouani. Facial action unit intensity predicition via hard multi-task metric learning for kernel regression. IEEE International Conference and Workshops on Automatic Face and Gesture Recognition, 2015.
- M. Soury.

Détection multimodale du stress pour la conception de logiciels de remédiation. PhD thesis, Université Paris-sud, 2014.