Secure JPEG Scrambling Enabling Privacy in Photo Sharing

Lin Yuan, Pavel Korshunov, **Touradj Ebrahimi** Multimedia Signal Processing Group, EPFL De-ID workshop, Ljubljana, Slovenia

Workshop on De-identification for Privacy Protection in Multimedia

Motivation

- Social network and cloud service
- Easy and fast photo sharing, huge amount

Daily Number of Photos Uploaded & Shared on Select Platforms, 2005 - 2014YTD

KPCB estimates based on publicly disclosed company data, 2014 YTD

Workshop on De-identification for Privacy Protection in Multimedia

Motivation

- Privacy scandals
 - Governmental surveillance, e.g. PRISM
 - Leakage of celebrities private photos
- Existing privacy protection solutions
 - Rudimental
 - limited degree of protection
- People lack awareness of privacy issue

Goal and Objectives

- Goal
 - Diminish privacy risks in online photo sharing, while preserving usability.
- Objectives
 - Efficient and secure JPEG scrambling scheme
 - Privacy-preserving photo sharing architecture, preventing privacy breaches against public organizations and individuals

- Overview
 - Secure and reversible: relying on secret key
 - Backward compatible: JPEG APP11 marker
 - Fast and low overhead: integrate in coding/transcoding

Workshop on De-identification for Privacy Protection in Multimedia

- Two modes of scrambling and descrmbling
 - I. JPEG encoding/decoding

8/14/2015

Two modes of scrambling and descrabling
II. JPEG transcoding

8/14/2015

• The algorithm

Original JPEG photo

Workshop on De-identification for Privacy Protection in Multimedia

• Variable strength granularity

FÉDÉRALE DE LAUSANN

• Experiment: Strength vs. Privacy vs. Overhead

	Original image	Low-level scrambled	Medium-level scrambled	High-level scrambled	Ultra-high-level scrambled
NO. of detected faces	3944	1638	14	11	10
AVG. overhead (only face regions scrambled)		1.87%	2.04%	2.15%	3.15%
AVG. overhead (whole image scrambled)		1.87%	4.89%	5.96%	18.41%

- 1000 images, max. pixel resolution 1024 x 1024, file size 100 KB ~ 330 KB
- OpenCV, Haar Feature-based Cascade face detector

Photo Sharing Architecture

- Assumptions:
 - Client device/application completely trusted
 - Server minimally trusted (for revocation)
 - Social network or cloud service not trusted
- Principles

8/14/2015

- Photo data protection/recovery ONLY on client device
- ONLY protected data "flying" on cloud

Photo Sharing Architecture

- Sender-side operations
 - Protection and upload
- Server-side operations
 - Hosting and Access control
- Recipient-side operations
 - Download and Reconstruction

Prototype APP: ProShare

- iOS based
- Facebook interaction

Workshop on De-identification for Privacy Protection in Multimedia

Conclusion

- Efficient and secure privacy protection filter based on JPEG scrambling
- Easy-to-use and privacy-preserving architecture for online photo sharing
- Prototype application

Future Work

- Context-aware privacy protection
- Subjective privacy evaluation
- Inclusion of an easy to use PKI

Thanks for attention.

Workshop on De-identification for Privacy Protection in Multimedia

