The tricks neurons use to express their genes: jumping genes, zero-length exons and RNA loops
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Our cellular model system will be mention motor neurons from iPS models of MND, which is already established in the lab.
Even though the mutations in UTRs can be identified from the available exome data, but most studies focus on the coding sequence


Zero-length exons



Splicing makes an mRNA
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Recursive splicing makes same mRNA

— ; —

recursive splice site

s M



Recursive splicing makes same mRNA
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Recursive splicing makes same mRNA




Genes expressed in the brain are extremely long
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Recursive splice sites are present within some of the longest genes
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The 11 black dots shown in this middle panel correspond to a pyrimidine-rich sequence leading into an AG acceptor site which is then followed by no obvious sequence preference. This motif was not unexpected since the novel junctions were input into our analysis based on their conformity to splice site consensus sequences in the intronic regions identified by the novel junction reads. Indeed over 95% of these input junctions would carry this motif meaning that enrichment was relatively low. In contrast, our analysis identified ten sites across nine genes which had a classic 3’ splice site immediately juxtaposed onto a strong 5’ splice site. This is an impressive 15-fold enrichment above the occurrence of this motif in our input junctions and strongly suggests that this motif has a purpose in the processing of multiple long genes.  


Definition of the cryptic exon is required for recursive splicing
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Recursive sites are followed by cryptic poison exons
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Excitingly we also see that protective measures are in place in case the recursive site is not utilized correctly. In this top panel we can see the upstream exons being spliced on to our recursive sites. Based on our prominent RNA-seq saw-tooth patterns it is expected that the 5’ splice site is then immediately used to remove the remainder of the intron. However, if it is isn’t then within 350nt of each of these sites we find another strong 5’ splice site consensus sequence. In all but one case prior to this site we have in-frame stop codons that would lead to nonsense-mediated decay activation and removal of the transcript. Indeed, for the CADM1 gene seen in these RT-PCRs, we can see a junction that is detected when we use a forward primer immediately downstream of the recursive site towards the 3’ exon which shows that this poison exon is not always excluded. Secondly we see that inhibition of translation and subsequently NMD with cycloheximide leads to an accumulation of this specific poison exon in the mature transcript. Thus it appears that measures are in place to ensure that recursive splicing is used correctly in the processing of these long introns.  


Recursive site prevents inclusion of the cryptic exon
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Suggested model for the mechanism of recursive splicing in vertebrates
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Suggested model for the mechanism of recursive splicing in vertebrates
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Suggested model for the mechanism of recursive splicing in vertebrates
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Suggested model for the mechanism of recursive splicing in vertebrates
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Suggested model for the mechanism of recursive splicing in vertebrates




The cryptic exon is included if preceded by another cryptic exon
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Recursive splicing detects upstream cryptic exons
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Recursive splicing detects upstream cryptic exons
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Recursive splicing detects upstream cryptic exons
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Recursive splicing detects upstream cryptic exons
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Cryptic exon detects other cryptic exons due to recursive splicing
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Jumping genes
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Formation of exons from antisense Alu elements
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hnRNP C represses splicing of Alu exons
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Alu exons can cause human diseases
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hnRNP C controls the emergence of Alu-derived cryptic exons
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hnRNP C represses damaging cryptic Alu exons
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RNA loops
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MRNASs have a structure
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Example 1: RNA structures can act as thermometers
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RNA duplexes in 3’ UTR lead to formation of long RNA loops
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Long-range RNA duplexes are not computationally predicted
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STAU1 regulates cytoplasmic splicing of the XBP1 mRNA
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We identified an RNA duplex in the XBP1 3’'UTR
The RNA duplex is required for STAU1 binding to XBP1 mRNA
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summary
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RBPs regulate the time and space of neuronal gene expression
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Apologise that the view is centered on work that I participated in – a lot of others contributed to these concepts.


Recursive splicing iCLIP, Alu exons
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