

The tricks neurons use to express their genes: jumping genes, zero-length exons and RNA loops

Jernej Ule, UCL Institute of Neurology, <u>ulelab.info</u>

How are RNAs important for gene expression in neurons?

mRNA

neurons

motor neuron disease

No cure available 1/232 deaths in 2012

Mutations in six RNA-binding proteins

Measure interactions

What proteins bind to an RNA?

Disease models

iPS-derived motor neurons

Integrate regulation

How do these proteins control synthesis of other proteins?

RNA splicing, stability, translation

Interpret mutations

How mutations disrupt protein-RNA interactions.

New techniques

hiCLIP & iCLIP

Zero-length exons

Splicing makes an mRNA

Splicing makes an mRNA

Genes expressed in the brain are extremely long

Definition of the cryptic exon is required for recursive splicing

Recursive sites are followed by cryptic poison exons

Recursive site prevents inclusion of the cryptic exon

Suggested model for the mechanism of recursive splicing in verte	brates

The cryptic exon is included if preceded by another cryptic exon

Cryptic exon detects other cryptic exons due to recursive splicing

Jumping genes

Formation of exons from antisense Alu elements

- Alus are transposable elements
 - 10% of human genome
 - 650k in introns

- Alus resemble exons when in antisense
 - Cryptic splice sites
 - poly-U tracts
- Alus are an important source of new exons in primates
 - ~5% of human alternative exons

hnRNP C represses splicing of Alu exons

Alu exons can cause human diseases

hnRNP C controls the emergence of Alu-derived cryptic exons

hnRNP C represses damaging cryptic *Alu* exons

RNA loops

mRNAs have a structure

...to form mRNPs

Example 1: RNA structures can act as thermometers

RNA duplexes in 3' UTR lead to formation of long RNA loops

only hiCLIP

STAU1 regulates cytoplasmic splicing of the XBP1 mRNA

We identified an RNA duplex in the XBP1 3'UTR

The RNA duplex is required for STAU1 binding to XBP1 mRNA

STAU1 is required for efficient cytoplasmic splicing of XBP1 mRNA during UPR

summary

Thanks to...

Recursive splicing

Chris Sibley

Lorea Blazquez

Nejc Haberman

Warren Emmett

Miha Modic

iCLIP, Alu exons

Julian König Kathi Zarnack

hiCLIP, Staufen

Yoichiro Sugimoto

Alessandra Vigilante

Elodie Darbo

Computational collaborators

Nick Luscombe LRI, UCL

Tomaž Curk University of Ljubljana

Vincent Piagnol
UCL Institute of
Genetics

