Visual features II

Roland Memisevic

Deep Learning Summer School 2015, Montreal

figures by Javier Movellan

What next?

Krizhevsky et al 2012

Vision beyond object recognition

- Many vision (and other cognition) tasks depend on encoding relations:
- Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optical flow, modeling object relations, articulation, odometry, analogy, ...

Random dot stereograms

Some things are hard to infer from still images

There are things images cannot teach you

Learn relations by concatenating images?

- Problem: This would make unit x_{i} conditionally independent of unit y_{j} given \boldsymbol{z}.

Learn relations by concatenating images?

- Solution: Allow x_{i} and y_{j} to be in one clique.
- This will require "transistor neurons" that can do more than weighted summation.

$\boldsymbol{w}^{\mathrm{T}} \boldsymbol{x}$?

- Mel, 1994

Families of manifolds

- If \boldsymbol{y} is a transformed version of \boldsymbol{x}, then \boldsymbol{y} will be on a conditional manifold.
- Idea: Learn a model for \boldsymbol{y}, but let the parameters be a function of X.

Bi-linear models

- $w_{j k}(\boldsymbol{x})=\sum_{i} w_{i j k} x_{i}$, so

$$
z_{k}=\sum_{j} w_{j k} y_{j}=\sum_{j}\left(\sum_{i} w_{i j k} x_{i}\right) y_{j}=\sum_{i j} w_{i j k} x_{i} y_{j}
$$

see, for example, (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Bi-linear models

- Similar for \boldsymbol{y} :

$$
y_{j}=\sum_{k} w_{j k} z_{k}=\sum_{k}\left(\sum_{i} w_{i j k} x_{i}\right) z_{k}=\sum_{i k} w_{i j k} x_{i} z_{k}
$$

see, for example, (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Example: Gated Boltzmann machine

$$
\begin{aligned}
& E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})=\sum_{i j k} W_{i j k} x_{i} y_{j} z_{k} \\
& P(\boldsymbol{y}, \boldsymbol{z} \mid \boldsymbol{x})=\frac{1}{z(\boldsymbol{x})} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \\
& Z(\boldsymbol{x})=\sum_{\boldsymbol{y}, \boldsymbol{z}} \exp (E(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z})) \\
& \rho\left(z_{k} \mid \boldsymbol{x}, \boldsymbol{y}\right)=\operatorname{sigmoid}\left(\sum_{i j} W_{i j k} x_{i} y_{j}\right) \\
& P\left(y_{j} \mid \boldsymbol{x}, \boldsymbol{z}\right)=\operatorname{sigmoid}\left(\sum_{i k} W_{i j k} x_{i} z_{k}\right)
\end{aligned}
$$

- (Memisevic, Hinton; 2007)

Example: Gated autoencoder

- Encoder and decoder weights become a function of \boldsymbol{x}.
- Training with back-prop (Memisevic, 2008)

Multiplicative interactions

Hinton 1981; v.d. Malsburg 1981

- Binocular+Motion Energy models (Adelson, Bergen; 1985), (Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
- Higher-order neural nets, "Sigma-Pi-units"
- Tensor product binding (Smolensky, 1990), HRR (Plate, 1994)
- Routing circuits (Olshausen; 1994)
- Subspace SOM (Kohonen, 1996)
- Bi-linear models (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007)
- ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki; 2003): Higher-order within image structure
- (2006 -) GBM, mcRBM, GAE, convISA, applications...

Factored Gated Autoencoder

- Projecting onto filters first allows us to use fewer products. (Memisevic, Hinton 2010), (Taylor et al 2009)
- This is equivalent to factorizing the three-way parameter tensor.

Toy examples

- There is no structure in these images.
- Only in how they change.

Learned filters $W_{i f}^{X}$

Learned filters $w_{j f}^{Y}$

Rotation filters

Rotation filters

Filters learned from split-screen shifts

Filters learned from split-screen shifts

Natural video filters

Natural video filters

Understanding gating

- Take a linear transformation, L, in pixel space (a "warp"):

$$
y=L x
$$

and consider the task:

Given \boldsymbol{x} and \boldsymbol{y}, what is L ?

Understanding gating

(I) Orthogonal transformations decompose into 2-D rotations:

$$
U^{\mathrm{T}} L U=\left[\begin{array}{lll}
R_{1} & & \\
& \ddots & \\
& & R_{k}
\end{array}\right] \quad R_{i}=\left[\begin{array}{cc}
\cos \left(\theta_{i}\right) & -\sin \left(\theta_{i}\right) \\
\sin \left(\theta_{i}\right) & \cos \left(\theta_{i}\right)
\end{array}\right]
$$

- (Eigen-decomposition $L=U D U^{\mathrm{T}}$ has complex eigenvalues of length 1.)
(II) Commuting transformations share an eigen-basis:
- They differ only with respect to the rotation-angle they apply in their eigenspace.

Understanding gating

Example: Translation and the Fourier spectrum

- l-D translation matrices are circulants, such as:

$$
L=\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{array}\right]
$$

- Their eigenvectors are phasors.
- (Can extend this to images via block-circulants)

Orthogonal transformations decompose into rotations

To detect the rotation angle, compute a 2-d inner product

To detect the rotation angle, compute a 2-d inner product

To detect the rotation angle, compute a 2-d inner product

To detect the rotation angle, compute a 2-d inner product

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

The aperture problem

The aperture problem

- Not all images are represented equally well in each subspace.

To detect the rotation angle, pool over 2-d inner products

- This is the same as a factored bi-linear model.
- It is also the same as a "square-pooling" model (complex cell) if we let $\boldsymbol{x}=\boldsymbol{y}$.

Action recognition 2011

(Hollywood 2)

- Convolutional GBM (Taylor et al., 2010)
- hierarchical ISA (Le, et al., 2011)

Other applications

- Invariance from videos (Cadieu, Olshausen 2011); (Zou et al 2012); (Memisevic, Exarchakis 2013)
- Depth inference, eg. (Fleet et al 1994), (Konda, Memisevic 2014)
- Analogy making (Memisevic, Hinton 2010)
- Odometry (Konda, Memisevic 2015)
- ...

Vanishing gradients

- Back-prop through many layers is hard, because computing the product of many matrices is unstable.
- Orthogonal layers may help, because their eigenvalues have absolute value 1.0 (eg. Saxe et al. 2014)
- Identity initialization (Le et al 2015) works, too (but is a strange choice)

Orthogonal weights create "dynamic memory"

- An infinite sine-wave can be generated by applying the same orthogonal transformation over and over again.
- This will work independently of the initial phase of the sine-wave, if your basis is "steerable" (Bethge et al. 2007).

Orthogonal weights create "dynamic memory"

- An infinite sine-wave can be generated by applying the same orthogonal transformation over and over again.
- This will work independently of the initial phase of the sine-wave, if your basis is "steerable" (Bethge et al. 2007).

Orthogonal weights create "dynamic memory"

- An infinite sine-wave can be generated by applying the same orthogonal transformation over and over again.
- This will work independently of the initial phase of the sine-wave, if your basis is "steerable" (Bethge et al. 2007).

Why memory needs gating

picture from (Hochreiter, Schmidthuber; 1997)

Gating units

- Mixtures of orthogonal transformations can generate arbitrary frequencies (if we know the right mixture coefficients).
- This will still work independently of the initial phase of each respective sine-wave.

Predictive training

- (Michalski et al., 2014)
- One way to turn a bi-linear model into a recurrent net is by training to predict future frames, assuming the transformation to be constant.

sine waves

sine waves

sine waves

sine waves

The model learns rotational derivatives

$$
U^{\mathrm{T}} L U=\left[\begin{array}{lll}
R_{1} & & \\
& \ddots & \\
& & R_{k}
\end{array}\right] \quad R_{i}=\left[\begin{array}{cc}
\cos \left(\theta_{i}\right) & -\sin \left(\theta_{i}\right) \\
\sin \left(\theta_{i}\right) & \cos \left(\theta_{i}\right)
\end{array}\right]
$$

Learning higher-order derivatives (acceleration)

Learning higher-order derivatives (acceleration)

snap, crackle, pop

- The model is orthogonal in time, contractive in layers
- Sigmoids represent invariance, linear features equivariance
- 3-way connections similar to tensor nets (Socher et al 2013)

Annealed teacher forcing

- Should a unit get bottom-up or top-down information?
- Given it both, but reduce the bottom-up information over time. Eg. by adding more and more corruption.

chirps

Harmonics

Abstract

\| HWM

NORB videos

Multi-step prediction helps

Recognizing accelerations

Data set	$m[1] 1: 2$	$m[1] 2: 3$	$(m[1] 1: 2, m[1] 2: 3)$	$m[2] 1: 3$
AccROT	$18.1(19.4)$	$29.3(30.9)$	$74.0(64.9)$	$74.4(53.7)$
AccSHIFT	$20.9(20.6)$	$34.4(33.3)$	$42.7(38.4)$	$80.6(63.4)$

Learned filters

accelerated shifts

accelerated rotations

bouncing balls

bouncing balls (Mnih et al), (Sutskever et al)

Adding hidden "notebook" units

- If we add hidden units to \mathbf{x}, each transformation will be able to
(. write information into the hiddens
(2) read out from the hiddens
(3) transform the hiddens
(a) transform the observables

Adding hidden "notebook" units

- If we add hidden units to \mathbf{x}, each transformation will be able to
(. write information into the hiddens
(2) read out from the hiddens
(3) transform the hiddens
(4) transform the observables

bouncing ball with occlusion

Vanishing gradients

- Back-prop through many layers is hard, because computing the product of many matrices is unstable.
- Orthogonal layers may help, because their eigenvalues have absolute value 1.0 (eg. Saxe et al. 2014)
- Identity initialization (Le et al 2015) works, too (but is a strange choice)

Vanishing gradients

- Back-prop through many layers is hard, because computing the product of many matrices is unstable.
- Orthogonal layers may help, because their eigenvalues have absolute value 1.0 (eg. Saxe et al. 2014)
- Identity initialization (Le et al 2015) works, too (but is a strange choice)

What you should really want are orthogonal active paths through the network.

A 2-d subspace

$\boldsymbol{x} \approx \boldsymbol{a}_{k} \boldsymbol{W}_{k}+a_{j} \boldsymbol{W}_{\ell}$

$$
a_{k}=?, \quad a_{\ell}=?
$$

figures by Javier Movellan

A 2-d subspace

$\boldsymbol{x} \approx a_{k} \boldsymbol{w}_{k}+a_{l} \boldsymbol{w}_{\ell}$
$\boldsymbol{a}_{k}=\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}, \quad \boldsymbol{a}_{\ell}=\boldsymbol{w}_{\ell}^{\mathrm{T}} \boldsymbol{x}$
figures by Javier Movellan

Do autoencoders orthogonalize weights?

- Autoencoders minimize

$$
(\boldsymbol{r}(\boldsymbol{x})-\boldsymbol{x})^{2}
$$

using the reconstruction

$$
\boldsymbol{r}(\boldsymbol{x})=W \boldsymbol{h}(\boldsymbol{x})=\sum_{k: h_{k} \neq 0} h_{k} \boldsymbol{w}_{k}
$$

where h_{k} is the output of hidden unit k

- For orthonormal active weights the optimal coefficients would be:

$$
h_{k}=\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}
$$

- In reality, a ReLU autoencoder uses

$$
h_{k}=\boldsymbol{w}_{k}^{\mathrm{T}} \boldsymbol{x}+b_{k}
$$

Autoencoders learn negative biases

- see also M. Ranzato, et al. 2007, K. Kavukcuoglu, et al., 2008.

Zero-bias ReLUs are hard to beat

CIFAR-10
(Coates et al., 2011)

CIFAR-10 permutationinvariant 2015)

The energy function of a ReLU autoencoder

- ReLU autoencoder:

$$
\mathcal{F}(\boldsymbol{x})=\frac{1}{2}\left(\boldsymbol{x}+\boldsymbol{a}_{\boldsymbol{x}}\right)^{\mathrm{T}} W_{\boldsymbol{x}}^{\mathrm{T}} W_{\boldsymbol{x}}\left(\boldsymbol{x}+\boldsymbol{a}_{\boldsymbol{x}}\right)-\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{c}\|^{2}
$$

with $\boldsymbol{a}_{\boldsymbol{x}}=\frac{1}{2}\left(W_{\boldsymbol{x}}^{\mathrm{T}} W_{\boldsymbol{x}}\right)^{-1} W_{\boldsymbol{x}}^{\mathrm{T}} b_{\boldsymbol{x}}$ and $W_{\boldsymbol{x}}$ contains the active weight vectors for \boldsymbol{x}.

- Zero-bias ReLU autoencoder:

$$
\mathcal{F}(\boldsymbol{x})=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} W_{\boldsymbol{x}}^{\mathrm{T}} W_{\boldsymbol{x}} \boldsymbol{x}-\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{c}\|^{2}
$$

The energy function of a ReLU autoencoder

- Orthogonal transformations are "steerable" (Bethge et al. 2007) figure by David Krueger

Truncated rectified unit (Trec)

- Like spike-and-slab, hard-threshold, "coring"

Truncated linear unit (TLin)

- Like spike-and-slab, hard-threshold, "coring"

ZAE features from tiny images (Torralba et al.)

Perm-invariant CIFAR-10

- Zero-bias ReLU at test time.
- With fine-tuning and dropout: 64.1\%

Perm-invariant CIFAR-10 patches

500 hiddens

1000 hiddens

Rotation filters

Rotation filters

Deep fully-connected CIFAR-10

(Zhouhan Lin)

Deep fully-connected CIFAR-10

(Zhouhan Lin)

Deep fully-connected CIFAR-10

(Zhouhan Lin)
8 layers and dropout: 69.62\%
Training with deformations (not perm-invariant): 78.62\%

Deep fully-connected CIFAR-10

Logistic Regression on whitened data (Krishevsky);
Pure backprop on a 782-10000-10 network (Krishevsky);
Pure backprop on a 782-10000-10000-10 network (Krishevsky);
RBM with 2 hidden layers of 10000 hidden units each, plus alogistic regression (Krishevsky);
RBM with 10000 hiddens plus logistic regression (Krishevsky);
Fastfood FFT model (13);
Zerobias autoencoder of 4000 hidden units with logistic regression (10);
782-4000-1000-4000-10 Z-Lin network trained without dropout;
782-4000-1000-4000-1000-4000-1000-4000-10 Z-Lin network, trained with dropout
10 Z-Lin network the same as (8) but trained with dropout and data augmentation

Thank you
Questions?

Analogy making

- (Susskind, et al., 2011)

