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Vision beyond object recognition

@ Many vision (and other cognition) tasks depend on encoding
relations:

@ Geometry, stereo, structure-from-motion, motion understanding.
activity analysis, tracking, optical flow, modeling object relations,
articulation, odometry, analogy, ...
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Random doft stereograms
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Some things are har
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There are things images cannot teach you
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Learn relations by concatenating images?
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@ Problem: This would make unit x; conditionally independent of unit
y; given z.
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Learn relations by concatenating images?
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@ Solution: Allow x; and y; fo be in one clique.

@ This will require “transistor neurons” that can do more than
weighted summation.
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@ Mel, 1994
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Families of manifolds
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@ If y is a transformed version of x, then y will be on a conditional
manifold.

@ ldea: Learn a model for y, but let the parameters be a function of
X.
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Bi-linear models

z

OGO

O00®OO

y

~ 00000

@ Wjk(X) = >, WiX;, SO

Ze=Y Wiy = Z Zw,,kx,y, Zwukx,y,
J

see, for example, (Tfenenbaum, Freeman; 2000), (Grimes, Rao; 2005),
(Olshausen; 2007), (Memisevic, Hinton; 2007)
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Bi-linear models
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@ Similar for y:

i = Z WixZy = Z (Z VViiji)Zk = Z WikXiZy
& koo i

see, for example, (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005),
(Olshausen; 2007), (Memisevic, Hinton; 2007)
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Example: Gated Boltzmann machine

8 QOO E(x,y,2z) = Zyk Wi X;YjZi
Py, 2IX) = 75 exp (E(x,y.2))
Z(x) = Eyzexp (E(x,y,2))

8 P(2dX, y) = sigmoid(3>, Wyx))
P(y)|x, 2) = sigmoid(3", Wyxizi)

O OO0O0WOO

X y

@ (Memisevic, Hinton; 2007)

Roland Memisevic DL Summer School



Example: Gated autoencoder
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@ Encoder and decoder weights become a function of x.
@ Training with back-prop (Memisevic, 2008)
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Multiplicative interactions
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Hinton 1981; v.d. Malsburg 1981
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Binocular+Motion Energy models
(Adelson, Bergen; 1985), (Ozhawa,
DeAngelis, Freeman; 1990), (Fleet et
al., 1994)

Higher-order neural nets,
“Sigma-Pi-units”

Tensor product binding (Smolensky,
1990), HRR (Plate, 1994)

Routing circuits (Olshausen; 1994)
Subspace SOM (Kohonen, 1996)

Bi-linear models (Tenenbaum,
Freeman; 2000), (Grimes, Rao; 2005),
(Olshausen; 2007)

ISA, topographic ICA (Hyvarinen,
Hoyer; 2000), (Karklin, Lewicki; 2003):
Higher-order within image structure
(2006 -) GBM, mcRBM, GAE, conviSA,
applications...
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Factored Gated Autoencoder
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@ Projecting onto filters first allows us to use fewer products.
(Memisevic, Hinton 2010), (Taylor et al 2009)

@ This is equivalent to factorizing the three-way parameter tensor.
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Toy examples

@ There is no structure in these images.
@ Only in how they change.
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Learned filters w
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Learned filters W};
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Rotation filters
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Filters learned from split-screen shifts

Roland Memisevic DL Summer School



Filters learned from split-screen shifts
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Natural video filters
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Natural video filters
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Understanding gating

@ Take a linear transformation, L, in pixel space (a “warp”):
y =1Lx

and consider the task:

Given x and y, whatis L?
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Understanding gating

(I) Orthogonal transformations decompose into 2-D
rotations:

Ry
UTLU = R =
R

cos(d;)) —sin())
sin(6;) cos(a,')}

@ (Eigen-decomposition L = UDUT has complex eigenvalues of
length 1.)

(1 Commuting tfransformations share an eigen-basis:

@ They differ only with respect to the rotation-angle they apply in
their eigenspace.
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Understanding gating

Example: Translation and the Fourier spectrum

@ 1-D translation matrices are circulants, such as:

01 000
00100
L=({0 0 0 1 O
0 00 0 1
1 00O0O

@ Their eigenvectors are phasors.
@ (Can extend this to images via block-circulants)
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Orthogonal transformations decompose into

rotations
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To detect the rotation angle, compute a 2-d inner
product
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To detect the rotation angle, compute a 2-d inner
product
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To detect the rotation angle, compute a 2-d inner
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To detect the rotation angle, compute a 2-d inner
product
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.

VRO
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.

VARG
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.
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The aperture problem

The aperture problem
@ Not dll images are represented equally well in each subspace.

— O &

Roland Memisevic DL Summer School




To detect the rotation angle, pool over 2-d inner
products
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@ This is the same as a factored bi-linear model.

@ Itis also the same as a "square-pooling” model (complex cell) if we
let x =y.
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Action recognifion 2011

(Hollywood 2)

@ Convolutional GBM (Taylor et al., 2010)
@ hierarchical ISA (Le, et al., 2011)
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Other applications

@ Invariance from videos (Cadieu, Olshausen 2011); (Zou et al 2012);
(Memisevic, Exarchakis 2013)

@ Depthinference, eg. (Fleet et al 1994), (Konda, Memisevic 2014)
@ Analogy making (Memisevic, Hinton 2010)

@ Odometry (Konda, Memisevic 2015)

° ..
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Vanishing gradients
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@ Back-prop through many layers is hard, because computing the
product of many matrices is unstable.

@ Orthogonal layers may help, because their eigenvalues have
absolute value 1.0 (eg. Saxe et al. 2014)

@ |dentity initialization (Le et al 2015) works, too (but is a strange
choice)
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Orthogonal weights create “"dynamic memory”

@ An infinite sine-wave can be generated by applying the same
orthogonal tfransformation over and over again.

@ This will work independently of the initial phase of the sine-wave, if
your basis is “steerable” (Bethge et al. 2007).

Roland Memisevic DL Summer School
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Orthogonal weights create “"dynamic memory”

@ An infinite sine-wave can be generated by applying the same
orthogonal tfransformation over and over again.

@ This will work independently of the initial phase of the sine-wave, if
your basis is “steerable” (Bethge et al. 2007).
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Why memory needs gating
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picture from (Hochreiter, Schmidthuber; 1997)
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Gating units
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@ Mixtures of orthogonal fransformations can generate arbitrary
frequencies (if we know the right mixture coefficients).

@ This will still work independently of the initial phase of each
respective sine-wave.
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Predictive training

m(t—l:t) m(t—1:t)

<1 0) D)

@ (Michalski et al., 2014)

@ One way to turn a bi-linear model into a recurrent net is by training
to predict future frames, assuming the transformation o be
constant,
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sine waves
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sine waves
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sine waves
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sine waves
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The model learns rotational derivatives

Ry
Uu=| - R =
Ry

3 by
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Learning higher-order derivatives (acceleration)
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Learning higher-order derivatives (acceleration)
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snap, crackle, pop
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depth (order of mappings)

@ The model is orthogonal in fime, contractive in layers
@ Sigmoids represent invariance, linear features equivariance
@ 3-way connections similar to tensor nets (Socher et al 2013)
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Annealed teacher forcing
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sequence elements (time)

@ Should a unit get bottom-up or top-down information?
@ Given it both, but reduce the bottom-up information over time. EgQ.
by adding more and more corruption.
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Harmonics
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NORB videos
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Multi-step prediction helps

pretrained
1-step pred.
2-step pred.
3-step pred.
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Recognizing accelerations

Dataset m[1]1:2  m[1]2:3  (m1]1:2,m[1]2:3) m[2]1:3

AccRotr  18.1(19.4) 29.3 (30.9) 74.0 (64.9) 74.4 (53.7)
ACCSHIFT  20.9 (20.6) 34.4(33.3) 42.7 (38.4) 80.6 (63.4)
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Learned filters

accelerated rotations NORBYVideos
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bouncing balls (Mnih et al), (Sutskever et al)
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Adding hidden “notebook” units
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@ If we add hidden units to x, each fransformation will be able to

@ write information into the hiddens
@ read out from the hiddens

© tfransform the hiddens

@ transform the observables
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Adding hidden “notebook” units
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@ If we add hidden unifs fo x, each transformation will be able to

@ write information into the hiddens
@ read out from the hiddens

© transform the hiddens

@ fransform the observables
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bouncing ball with occlusion
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Vanishing gradients
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@ Back-prop through many layers is hard, because computing the
product of many matrices is unstable.

@ Orthogonal layers may help, because their eigenvalues have
absolute value 1.0 (eg. Saxe et al. 2014)

@ |dentity initialization (Le et al 2015) works, too (but is a strange
choice)
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Vanishing gradients
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@ Back-prop through many layers is hard, because computing the
product of many matrices is unstable.

@ Orthogonal layers may help, because their eigenvalues have
absolute value 1.0 (eg. Saxe et al. 2014)

@ |dentity initialization (Le et al 2015) works, too (but is a strange
choice)
What you should really want are
orthogonal active paths
through the network.
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A 2-d subspace

bl

X~ QWi+ aQw,
ar =7, Qq,="?

figures by Javier Movellan
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A 2-d subspace

bl

X~ oWy, + QaQw,
Qr=WiX, O, =W,X

figures by Javier Movellan

Roland Memisevic DL Summer School



Do autoencoders orthogonalize weights?

@ Autoencoders minimize )
(r(x) — x)

using the reconstruction

r(x)=Wh(x)= > hw,
k:hi£0

where h, is the output of hidden unit k
@ For orthonormal active weights the optimal coefficients would be:

T
he = wix
@ Inreality, a ReLU autoencoder uses

hy = WEX-F by
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Autoencoders learn negative biases

contractive AE (sigmoid)
im! BalW

20
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O30 =z 1 D5=0.6-0.4-0.2 0.0 02 04 05 0.8
hid bias hid bias

@ see also M. Ranzato, et al. 2007, K. Kavukcuoglu, et al., 2008.
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/Zero-bias RelLUs are hard to beat

Performance for Raw and Whitened Inputs

[ 70| ®—a CAE Relu with bias
) +—#* CAE Relu
g 70 e—® CAE Sigmoid
>
3
Ees £ 65 [
: 2
> = - kmeans (tri) raw @ 60|
™ - kmeans (hard) raw g
-~ gmm raw 3
© £ 55
-~ autoencoder raw 2
- tbm raw g
o kmeans (i) white & 50)
S5 ¢, o kmeans (hard) whi  Q
= —— gmm white 45
<+ autoencoder white
—— rbm white

100 200 400 Bgﬂ 1200 u 400 500 1000 1500 2000 2500 3000 3500 4000
# Feanres number of features

CIFAR-10 performance CIFAR-10 permutation-
(Coates et al., 2011) invariant  (Konda et al.,
2015)
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The energy function of a ReLU autoencoder

@ RelU autoencoder:

1 1
F(x) = 5(x+ ax)TWIWy(x + ax) — Slx - c|?

with ay = %(Vl/erx)” WTbyx and Wy contains the active weight
vectors for x.

@ Zero-bias ReLU autoencoder:

1 1
F(x) = 5X"WEWox — 5 lx — |
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The energy function of a ReLU autoencoder

@ Orthogonal transformations are “steerable” (Bethge et al. 2007)
figure by David Krueger
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Truncated rectified unit (Trec)

wix - (Wix > 0)

/

T
wix

@ Like spike-and-slab, hard-threshold, “coring”
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Truncated linear unit (TLiN)

wix - (|wix| > 0)

/

T
wix

P

@ Like spike-and-slab, hard-threshold, “coring”
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ZAE features from tiny images (Torralba et al.)
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Perm-invariant CIFAR-10

e—a TRec AENW a—e TReC AE
80 #—# TLin AE NW 80 *—+ TLin AE
o-e CAENWRS=3 oo CAERS=3
% CAE NW RS=-3 %% CAERS=-3
-9 K-means NW ¢ K-means
70] @ o Standout AE NW 70 ©-¢ standout AE
9 o
<] S, e
5 5
g 60 8 60
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j=J o
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c 50 ¥ < 50
ﬂ) o
I~ _e—* L
9 ) G S 9
40 '/&’/ 40
o
30 30t ¢
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
number of features number of features

@ Zero-bias RelLU af test time.
@ With fine-tuning and dropout: 64.1%

Roland Memisevic DL Summer School



Perm-invariant CIFAR-10 patches
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Rotation filters
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Rotation filters
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Deep fully-connected CIFAR-10

4000-1000-4000 ReLU-Lin_ 56.84 i

4000-4000-4000 RelU F I 52.84 .
4000-1000-4000 RelU | ] 54.91 e
4000-4000 RelU} ] 53.92

30 35 40 45 50 55 60 65 70 75
Accuracy (%)

(Zhouhan Lin)
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Deep fully-connected CIFAR-10

4000-4000-4000 ZAE | 62.35
4000-1000-4000 ZAE | | 62.77
4000-4000 ZAE | 61.88

1 1 L L 1 L L
30 35 40 45 50 55 60 ®©5 70 U5
Accuracy (%)

(Zhouhan Lin)
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Deep fully-connected CIFAR-10

4000-4000-4000 ZAE | 62.35
4000-1000-4000 ZAE | | 62.77
4000-4000 ZAE | 61.88

30 35 40 45 50 55 60 65 70 U5
Accuracy (%)

(Zhouhan Lin)

8 layers and dropout: 69.62%
Training with deformations (not perm-invariant): 78.62%

Roland Memisevic DL Summer School



Deep fully-connected CIFAR-10
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Methods

62.20
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1 2 3 4 5

Logistic Regression on whitened data (Krishevsky);

Pure backprop on a 782-10000-10 network (Krishevsky);

Pure backprop on a 782-10000-10000- 10 network (Krishevsky):

RBM with 2 hidden layers of 10000 hidden units each, plus alogistic regression (Krishevsky);
RBM with 10000 hiddens plus logistic regression (Krishevsky);

Fastfood FFT model (13);

Zerobias autoencoder of 4000 hidden units with logistic regression (10);
782-4000-1000-4000-10 Z-Lin network frained without dropout;
782-4000-1000-4000-1000-4000-1000-4000-10 Z-Lin network, trained with dropout

Z-Lin network the same as (8) but frained with dropout and data augmentation
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Thank you

Questions?
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Analogy making
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@ (Susskind, et al., 2011)
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