



FOR

### Deep Learning Summer School 2015

F

### **On manifolds** and autoencoders

#### by Pascal Vincent



Département d'informatique et de recherche opérationnelle

mercredi 5 août 2015

Université m

de Montréal

### PLAN

# Part I: Leveraging the manifold hypothesis Part II: Regularizing Auto-Encoders

Will be largely about unsupervised learning

### An unsupervised learning task: dimensionality reduction



What is it useful for?

### An unsupervised learning task: dimensionality reduction



What is it useful for?

- Data compression (lossy)
- Dataset visualisation (in 2D or 3D)
- Discovering «most important» features.

### A classic algorithm [Pearson 1901] [Hotelling 1933] Principal Component Analysis



- Finds (learns) k directions (a subspace) in which data has highest variance
   principal directions (eigenvetors) W
- \* Projecting inputs x on these vetors yields reduced dimension <u>representation</u> (&decorrelated) => principal components  $h = f_{\theta}(x) = W(x-\mu)$  with  $\theta = \{W, \mu\}$

### A classic algorithm [Pearson 1901] [Hotelling 1933] Principal Component Analysis



- Finds (learns) k directions (a subspace) in which data has highest variance
   principal directions (eigenvetors) W
- \* Projecting inputs x on these vetors yields reduced dimension <u>representation</u> (&decorrelated) => principal components  $h = f_{\theta}(x) = W(x-\mu)$  with  $\theta = \{W, \mu\}$

#### Why mention PCA?

- Prototypical unsupervised representation learning algorithm.
- Related to autoencoders
- Prototypical manifold modeling algorithm

### Lower-dimensional manifolds embedded in high dimensional space

#### Linear 2D manidold in 3D space (ex: subspace found by PCA)

#### Non-linear 2D manidold in 3D input space



mercredi 5 août 2015

The manifold hypothesis (assumption)

#### Natural data in high dimensional spaces concentrates close to lower dimensional manifolds.

Probability density decreases very rapidly when moving away from the supporting manifold.

# The curse of dimensionality

There are 10<sup>96329</sup> possible 200x200 RGB images.





mercredi 5 août 2015



mercredi 5 août 2015

- Natural images occupy a tiny fraction of that space
   => suggests peaked density
- Realistic smooth transformations from one image to another
   => continuous path along manifold



- Natural images occupy a tiny fraction of that space
   => suggests peaked density
  - Realistic smooth transformations from one image to another
     => continuous path along manifold

### The manifold hypothesis

Data density contentrates near a lower dimensional manifold

Can shift the curse from high d to  $d_M \ll d$ 

### Manifold follows naturally from continuous underlying factors (≈ intrinsic manifold coordinates)



Such continuous factors are (part of) a meaningful represetation!

### Modeling local tangent spaces

#### A non-linear manifold

- Can be represented by patchwork of tangent spaces
- Yields *local* linear coordinate systems (chart -> atlas)



### Non-parametric density estimation

### Non-parametric density estimation $\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$

Classical Parzen Windows density estimator





mercredi 5 août 2015

#### Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

**Isotropic Parzen:** 

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

#### Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

**Isotropic Parzen:** 

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

 $\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$ 

#### Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

**Isotropic Parzen:** 

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

Manifold Parzen:

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$$

(Vincent and Bengio, NIPS 2003)

*d<sub>M</sub>* high variance directions from PCA on *k* nearest neighbors

Non-local manifold Parzen: 
$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; \mu(x_i), C(x_i))$$
  
(Bengio, Larochelle, Vincent, NIPS 2006)

*d<sub>M</sub>* high variance directions output by **neural network** trained to maximize likelihood of *k* nearest neighbors



#### **Use in Bayes classifier on USPS**

| Algorithm       | Valid. | Test            | Hyper-Parameters                   |
|-----------------|--------|-----------------|------------------------------------|
| SVM             | 1.2%   | 4.68%           | $C = 100, \sigma = 8$              |
| Parzen Windows  | 1.8%   | 5.08%           | $\sigma = 0.8$                     |
| Manifold Parzen | 0.9%   | 4.08%           | $d = 11, k = 11, \sigma_0^2 = 0.1$ |
| Non-local MP    | 0.6%   | 3.64% (-1.5218) | $d = 7, k = 10, k_{\mu} = 10,$     |
|                 |        |                 | $\sigma_0^2 = 0.05, n_{hid} = 70$  |
| Non-local MP*   | 0.6%   | 3.54% (-1.9771) | $d = 7, k = 10, k_{\mu} = 4,$      |
|                 |        |                 | $\sigma_0^2 = 0.05, n_{hid} = 30$  |

Manifold learning is a rich subfield

#### **Purely non-parametric:**

• Manifold Parzen, LLE, Isomap, Laplacian eigenmaps, t-SNE, ...

#### **Learned parametrized function:**

 Parametric t-SNE, semi-supervised embedding, non-local manifold Parzen, ...

# What do all these approaches have in common

### Neighborhood-based training!

- They explicitly use distancebased neighborhoods.
- Training with k-nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
   Euclidean neighbor can be
   very different from you...

### Neighborhood-based training!

- They explicitly use distancebased neighborhoods.
- Training with k-nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
   Euclidean neighbor can be
   very different from you...



## Neighborhood-based training!

- They explicitly use distancebased neighborheods.
- Training with k nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
   Euclidean neighbor can be
   very different from you...



### PART II

### On Auto-Encoders and their regularization,

with **one** hidden layer of size d' neurons Functional form (parametric):  $X_2$  $X_1$  $y = f_{\theta}(\mathbf{x}) = \text{sigmoid} \left( \langle \mathbf{w}, \mathbf{h} \rangle + b \right)$  $\mathbf{\hat{h}} = \operatorname{sigmoid}(\mathbf{\underline{W}}^{\operatorname{hidden}}\mathbf{x} + \mathbf{\underline{b}}^{\operatorname{hidden}})$  $\overset{d' \times d}{d' \times 1}$ **Parameters**:  $\theta = \{ \mathbf{W}^{\text{hidden}}, \mathbf{b}^{\text{hidden}}, \mathbf{w}, b \}$ **Optimizing parameters on training set** (training the network):  $\theta^{\star} = \arg\min \hat{R}_{\lambda}(f_{\theta}, D_n)$  $\theta$  $\mathcal{J}_{\mathrm{MLP}}(\theta) = \left(\sum_{(x,t)\in D} L(t, f_{\theta}(x))\right) + \lambda \Omega(\theta)$ regularization term empirical risk (weight decay) mercredi 5 août 2015

Multi-Layer Perceptron (MLP)

Autoencoders: MLPs used for «unsupervised» representation learning

L(x,r)

- Make output layer \* same size as input layer
- Have target = input \*

r

 Loss encourages output (reonstruction) to be close to input.

decoding

encoding

reconstruction

hidden h

input X

#### Autoencoders are also called

- **Autoencoders**
- Auto-associators
- Diabolo networks
- Sandglass-shaped net

lower-dimensional bottleneck



The Diabolo

## Auto-Encoders (AE) for learning representations



### Auto-Encoders (AE) for learning representations Typical form










conection between Linear auto-encoders and PCA *d<sub>h</sub><d* (bottleneck, undercomplete representation):

- With linear neurons and squared loss
   autoencoder learns same suspace as PCA
- Also true with a single sigmoidal hidden layer, if using linear output neurons with squared loss [Baldi& Hornik 89] and untied weights.
- Won't learn the exact same basis as PCA, but W will span the same subspace.

### similarity between Auto-encoders and RBM

Consider an auto-encoder MLP

- with a single hidden layer with sigmoid non-linearity
- and sigmoid output non-linerity.
- Tie encoder and decoder weights: W' = W'.

**Autoencoder:**  $h_i = s(W_i x + b_i)$  $r_i = s(W_i^T h + b_{di})$ 

**Differences:** deterministic mapping h is a function of x.

**RBM**:  $P(h_i=1 | v) = s(W_i v + c_i)$  $P(v_{i}=1 | h) = s(W_{i}^{T}h+b_{i})$ 

stochastic mapping h is a random variable

### Greedy Layer-Wise Pre-training with RBMs

Stacking Restricted Boltzmann Machines (RBM) Deep Belief Network (DBN) [Hinton et al. 2006]



### Greedy Layer-Wise Pre-training with Auto-Encoders

Stacking basic Auto-Encoders [Bengio et al. 2007]



### Supervised fine-tuning

- Initial deep mapping was learnt in an unsupervised way.
- $\rightarrow$  initialization for a supervised task.
- Output layer gets added.
- Global fine tuning by gradient descent on supervised criterion.



### Supervised Fine-Tuning is Important

- Greedy layer-wise unsupervised pre-training phase with RBMs or auto-encoders on MNIST
- Supervised phase with or without unsupervised updates, with or without fine-tuning of hidden layers



#### **Classiffication performance on benchmarks:**

- Pre-training basic auto-encoder stack better than no pre-training
- Basic auto-encoder stack **almost** matched RBM stack...

Basic auto-encoders not as good feature learners as RBMs...

### What's the problem?

- \* Traditional autoencoders were for **dimensionality** reduction  $(d_h < d_x)$
- \* Deep learning success seems to depend on ability to learn **overcomplete representations** ( $d_h > d_x$ )
- Overcomplete basic autoencoder yields trivial useless solutions: identity mapping!
- Need for alternative regularization/ constraining



### Denoising auto-encoders: motivation

(Vincent, Larochelle, Bengio, Manzagol, ICML 2008)

- Simple idea «destroying information» of randomly selected input features; train to restore it.
   > 0-masking noise (now called «dropout» noise)
- Denoising corrupted input is a vastly more challenging task than mere reconcstruction.
- Even in widely over-complete case...
   it must learn intelligent encoding/decoding.
- Will encourage representation that is robust to small perturbations of the input.





 $\mathcal{J}_{\text{DAE}}(\theta) = \sum \mathbb{E}_{q(\tilde{x}|x)} \left[ L(x, g(h(\tilde{x}))) \right]$  $x \in D$ 



- learns robust & useful features
- easier to train than RBM features
- yield similar or better classification performance (as deep net pre-training)

#### Minimize:

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[ L(x, g(h(\tilde{x}))) \right]$$

mercredi 5 août 2015

## Denoising auto-encoder (DAE)

Autoencoder training minimizes:

$$\mathcal{J}_{AE}(\theta) = \sum_{x \in D} L(x, g(h(\tilde{x})))$$

Denoising autoencoder training minimizes

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[ L(x, g(h(\tilde{x}))) \right]$$

Cannot compute expectation exactly  $\Rightarrow$  use stochastic gradient descent, sampling corrupted inputs  $\tilde{x} \mid x$ 

## Denoising auto-encoder (DAE)

Autoencoder training minimizes:

$$\mathcal{J}_{AE}(\theta) = \sum_{x \in D} L(x, g(h(\tilde{x})))$$

Denoising autoencoder training minimizes

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[ L(x, g(h(\tilde{x}))) \right]$$

Cannot compute expectation exactly  $\Rightarrow$  use stochastic gradient descent, sampling corrupted inputs  $\tilde{x} \mid x$ 

#### **Possible corruptions q:**

- zeroing pixels at random (now called «dropout» noise)
- additive Gaussian noise
- salt-and-pepper noise

• . . .

### Denoising auto-encode Autoencoder training minimizes: $\mathcal{J}_{AE}(\theta) =$ $\sum L(x,$ Denoiting aut encoder training minimizes $\mathcal{J}_{\mathrm{DAE}}(\theta) = \sum \mathbb{E}_{q(\tilde{x}| x)}$ **Possible corruptions q**: zeroing pixels at random Cannot compute expectation exactly (now called «dropout» noise) ⇔ use sto has is gradient descent, sampling corrupted inputs $\tilde{x}|x$ • additive Gaussian noise • salt-and-pepper noise

### Learned filters

a) Natural image patches e.g.:



#### AE with weight decay







### Learned filters

.

AE





UX.

### Denoising auto-encoders: manifold interpretation

- \* DAE learns to «project back» corrupted input onto manifold.
- \* Representation  $h \approx$  location on the manifold



32

### Stacked Denoising Auto-Encoders (SDAE)



#### Advantages over stacking RBMs

- No partition function, can measure training criterion
- Very flexible: encoder & decoder can use any parametrization (more layers...)
- Performs as well or better than stacking RBMs for usupervised pre-training



Infinite MNIST

# Encouraging representation to be insensitive to corruption

- \* DAE encourages **reconstruction** to be insensitive to input corruption
- \* Alternative: encourage **representation** to be **insensitive**

 $\mathcal{J}_{\text{SCAE}}(\theta) = \sum \left[ L(x, g(h(x))) + \lambda \mathbb{E}_{q(\tilde{x}|x)} \left[ \|h(x) - h(\tilde{x})\|^2 \right] \right]$  $x \in D$ Reconstruction error stochastic regularization term

\* Tied weights i.e.  $W' = W^T$  prevent W from collapsing h to 0.

Encouraging representation to be insensitive to corruption

- \* DAE encourages reconstruction to be insensitive to input corruption
- Alternative: encourage representation to be insensitive

 $\sum (x, g(h(x)))$ 

Reconstruction error stochastic regularization term

XEq(: 2

\* Tied weights i.e.  $W = W^T$  prevent W from collapsing h to 0.

 $\mathcal{J}_{\mathrm{SCAE}}(\theta)$  =

 $\left\| h(x) - h(\tilde{x}) \right\|^2 \right]$ 

# From stochastic to analytic penalty

- \* SCAE stochastic regularization term:  $\mathbb{E}_{q(\tilde{x}|x)} \left[ \|h(x) h(\tilde{x})\|^2 \right]$
- \* For small additive noise  $\tilde{x}|x = x + \epsilon$ ,  $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$
- \* Taylor series expansion yields  $h(x + \epsilon) = h(x) + \frac{\partial h}{\partial x}\epsilon + \dots$
- It can be showed that



# Contractive Auto-Encoder (CAE)

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)



- \* For training examples, encourages both:
  - small reconstruction error
  - representation insensitive to small variations around example



**Computational considerations** CAE for a simple encoder layer

We defined  $\mathbf{h} = h(\mathbf{x}) = s(Wx + b)$ 

Further suppose: *s* is an elementwise non-linearity

s' its first derivative.

Let 
$$J(x) = \frac{\partial h}{\partial x}(x)$$
  
 $J_j = s'(b + x^T W_j)W_j$  where  $J_j$  and  $W_j$  represent j<sup>th</sup> row  
CAE penalty is:  $\|J\|_F^2 = \sum_{j=1}^{d_h} s'(a_j)^2 \|W_j\|^2$   
Compare to L2 weight decay:  $\|W\|_F^2 = \sum_{j=1}^{d_h} \|W_j\|^2$  Gradient backprop  
wrt parameters:

j=1

Gradient backprop wrt parameters:  $O(d_h d)$ 

### Higher order Contractive Auto-Encoder (CAE+H)

(Rifai, Mesnil, Vincent, Muller, Bengio, Dauphin, Glorot; ECML 2011)

- CAE penalizes Jacobian norm
- We could also penalize higher order derivatives
- \* Computationally too expensive: second derivative is a 3-tensor, ...
- \* Stochastic approach for efficiency: Encourage Jacobian at x and at  $x+\varepsilon$  to be the same.

$$\mathcal{J}_{CAE+H} = \sum_{x \in D}^{n} L(x, g(h(x)) + \lambda \left\| \frac{\partial h}{\partial x}(x) \right\|^{2} + \gamma \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \sigma^{2})} \left[ \left\| \frac{\partial h}{\partial x}(x) - \frac{\partial h}{\partial x}(x+\epsilon) \right\|^{2} \right]$$

### Higher order Contractive Auto-Endder (CAE+H)

(Rifai, Mesnil, Vincent, Muller, Keigio, Dauphin, Glorot; ECML 2011)

- CAE penalizes Jacobian porm
- We could the penalize higher order derivatives
- \* Computationally too expensive, second derivative is a 3-tensor,

L(x,g(h(x

 $\gamma \mathbb{E}_{\sim \mathcal{N}(0,\sigma^2)} \left\| \left\| \frac{\partial h}{\partial x}(x) - \frac{\partial h}{\partial x}(x+\epsilon) \right\|^2 \right\|$ 

\* Stochastic approach for efficiency: Encourage Jacocian at x and at  $x+\varepsilon$  to be the same.

 $x \in D$ 

 $\mathcal{J}_{CAE+H}$  =

### Learned filters















# Learned tangent space

\* Jacobian  $J_h(x) = \frac{\partial h}{\partial x}(x)$  measures sensitivity of *h* locally around *x* 

SVD:  

$$\frac{\partial h(\mathbf{x})^T}{\partial \mathbf{x}} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

Top **singular vectors** are **tangent** directions to which *h* is most sensitive.

$$\mathbf{T}_x = \{\mathbf{U}_{\cdot k} | \mathbf{S}_{kk} > \epsilon\}$$



**SVD of**  $J_h(x) = \frac{\partial h}{\partial x}(x)$ 

#### CIFAR-10



## Learned tangents CIFAR-10






Contractive Auto-Encoder (singular vectors of  $J_h(x)$ )



Not based on explicit neighbors or pairs of points!

### How to leverage the learned tangents

 Simard et al, 1993 exploited tangents derived from prior-knowledge of image deformations we can use our learned tangents instead.



- Use them to define tangent distance to use in your favorite distance (k-NN) or kernel-based classifier...
- \* Use them with tangent propagation when fine-tuning a deep-net classifier to make class prediction insensitive to tangent directions.
  (*Manifold Tangent Classifier*, Rifai et al. NIPS 2011) 0.81% on MNIST
- Moving preferably along tangents allows efficient quality sampling



### How to leverage the learned tangents

 Simard et al, 1993 exploited tangents derived from prior-knowledge of image deformations we can use our learned tangents instead.



- Use them to define tangent distance to use in your favorite distance (k-NN) or kernel-based classifier...
- \* Use them with tangent propagation when fine-tuning a deep-net classifier to make class prediction insensitive to tangent directions.
  (*Manifold Tangent Classifier*, Rifai et al. NIPS 2011) 0.81% on MNIST
- Moving preferably along tangents allows efficient quality sampling



## Analytic v.s. stochastic ?

#### a) Analytic approximation of stochastic perturbation

- - Equiv. to tiny perturbations: does not probe far away
- + Potentially more efficient. Ex: CAE's Jacobian penalty probes sensitivity in all *d* directions in O(d<sub>h</sub> d) With DAE or SCAE it would require encoding *d* corrupted inputs: O(d<sub>h</sub> d<sup>2</sup>)

#### b) Stochastic approximation of analytic criterion

- + can render practical otherwise computationally infeasible criteria Ex: CAE+H
- - less precise, more noisy

CAE+H actually leverages both

#### Score matching (Hyvärinen 2005)

We want to learn a p.d.f.:  $p_{\theta}(x) = \frac{1}{Z(\theta)}e^{-E_{\theta}(x)}$ with **intractable** partition function Z

Score matching: alternative inductive principle to max. likelihood

Find parameters that minimize objective:

$$J_{SM}(\theta) = \sum_{x \in D} \left( \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$

$$J_{SM}(\theta) = \sum_{x \in D} \left( \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$

$$J_{SM}(\theta) = \sum_{x \in D} \left( \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
$$\|J_E(x)\|^2$$

$$J_{SM}(\theta) = \sum_{x \in D} \left( \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
$$\|J_E(x)\|^2$$
derivative encouraged to be small: ensures

First derivative encouraged to be small: ensures training points stay close to local minima of E











# Score matching variants

Original score matching (Hyvärinen 2005):

$$J_{SM}(\theta) = \sum_{x \in D} \left( \frac{1}{2} \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
Analytic

Regularized score matching (Kingma & LeCun 2010):

$$J_{SMreg,\lambda}(\theta) = J_{SM} + \sum_{x \in D} \lambda \sum_{i=1}^{d} \frac{\partial^2 E}{\partial x_i^2}(x)$$
 Analytic

Denoising score matching (Vincent 2011)

$$J_{DSM,\sigma} = \sum_{x \in D} \left( \mathbf{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)} \left[ \frac{1}{2} \left\| \frac{\partial E}{\partial x} (x+\epsilon) - \frac{1}{\sigma^2} \epsilon \right\|^2 \right] \right)$$
Stochastic

## DAE training has a deeper relationsip to RBMs

- Same functional form as RBM:
  *h*(*x*) is expected hidden given visible
  *g*(**h**) is expected visible given hidden
- With linear reconstruction and squared error,
  DAE amounts to learning the following energy

$$E(\mathbf{x}; \underbrace{\mathbf{W}, \mathbf{b}, \mathbf{c}}_{i}) = -\frac{\langle \mathbf{c}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 + \sum_{j=1}^{d_h} \operatorname{softplus}\left(\langle \mathbf{W}_j, \mathbf{x} \rangle + \mathbf{b}_j\right)}{\sigma^2}$$

using the denoising score matching inductive principle.

 Above energy closely related to free energy of Gaussian-binary RBM (identical for σ=1)



# Questions ?