

FOR

Deep Learning Summer School 2015

F

On manifolds and autoencoders

by Pascal Vincent

Département d'informatique et de recherche opérationnelle

mercredi 5 août 2015

Université m

de Montréal

PLAN

Part I: Leveraging the manifold hypothesis Part II: Regularizing Auto-Encoders

Will be largely about unsupervised learning

An unsupervised learning task: dimensionality reduction

What is it useful for?

An unsupervised learning task: dimensionality reduction

What is it useful for?

- Data compression (lossy)
- Dataset visualisation (in 2D or 3D)
- Discovering «most important» features.

A classic algorithm [Pearson 1901] [Hotelling 1933] Principal Component Analysis

- Finds (learns) k directions (a subspace) in which data has highest variance
 principal directions (eigenvetors) W
- * Projecting inputs x on these vetors yields reduced dimension <u>representation</u> (&decorrelated) => principal components $h = f_{\theta}(x) = W(x-\mu)$ with $\theta = \{W, \mu\}$

A classic algorithm [Pearson 1901] [Hotelling 1933] Principal Component Analysis

- Finds (learns) k directions (a subspace) in which data has highest variance
 principal directions (eigenvetors) W
- * Projecting inputs x on these vetors yields reduced dimension <u>representation</u> (&decorrelated) => principal components $h = f_{\theta}(x) = W(x-\mu)$ with $\theta = \{W, \mu\}$

Why mention PCA?

- Prototypical unsupervised representation learning algorithm.
- Related to autoencoders
- Prototypical manifold modeling algorithm

Lower-dimensional manifolds embedded in high dimensional space

Linear 2D manidold in 3D space (ex: subspace found by PCA)

Non-linear 2D manidold in 3D input space

mercredi 5 août 2015

The manifold hypothesis (assumption)

Natural data in high dimensional spaces concentrates close to lower dimensional manifolds.

Probability density decreases very rapidly when moving away from the supporting manifold.

The curse of dimensionality

There are 10⁹⁶³²⁹ possible 200x200 RGB images.

mercredi 5 août 2015

mercredi 5 août 2015

- Natural images occupy a tiny fraction of that space
 => suggests peaked density
- Realistic smooth transformations from one image to another
 => continuous path along manifold

- Natural images occupy a tiny fraction of that space
 => suggests peaked density
 - Realistic smooth transformations from one image to another
 => continuous path along manifold

The manifold hypothesis

Data density contentrates near a lower dimensional manifold

Can shift the curse from high d to $d_M \ll d$

Manifold follows naturally from continuous underlying factors (≈ intrinsic manifold coordinates)

Such continuous factors are (part of) a meaningful represetation!

Modeling local tangent spaces

A non-linear manifold

- Can be represented by patchwork of tangent spaces
- Yields *local* linear coordinate systems (chart -> atlas)

Non-parametric density estimation

Non-parametric density estimation $\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$

Classical Parzen Windows density estimator

mercredi 5 août 2015

Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

Isotropic Parzen:

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

Isotropic Parzen:

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

 $\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$

Non-local manifold Parzen windows (Bengio, Larochelle, Vincent, NIPS 2006)

Isotropic Parzen:

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, \sigma^2 I)$$
isotropic

Manifold Parzen:

$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; x_i, C_i)$$

(Vincent and Bengio, NIPS 2003)

d_M high variance directions from PCA on *k* nearest neighbors

Non-local manifold Parzen:
$$\hat{p}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{N}(x; \mu(x_i), C(x_i))$$

(Bengio, Larochelle, Vincent, NIPS 2006)

d_M high variance directions output by **neural network** trained to maximize likelihood of *k* nearest neighbors

Use in Bayes classifier on USPS

Algorithm	Valid.	Test	Hyper-Parameters
SVM	1.2%	4.68%	$C = 100, \sigma = 8$
Parzen Windows	1.8%	5.08%	$\sigma = 0.8$
Manifold Parzen	0.9%	4.08%	$d = 11, k = 11, \sigma_0^2 = 0.1$
Non-local MP	0.6%	3.64% (-1.5218)	$d = 7, k = 10, k_{\mu} = 10,$
			$\sigma_0^2 = 0.05, n_{hid} = 70$
Non-local MP*	0.6%	3.54% (-1.9771)	$d = 7, k = 10, k_{\mu} = 4,$
			$\sigma_0^2 = 0.05, n_{hid} = 30$

Manifold learning is a rich subfield

Purely non-parametric:

• Manifold Parzen, LLE, Isomap, Laplacian eigenmaps, t-SNE, ...

Learned parametrized function:

 Parametric t-SNE, semi-supervised embedding, non-local manifold Parzen, ...

What do all these approaches have in common

Neighborhood-based training!

- They explicitly use distancebased neighborhoods.
- Training with k-nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
 Euclidean neighbor can be
 very different from you...

Neighborhood-based training!

- They explicitly use distancebased neighborhoods.
- Training with k-nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
 Euclidean neighbor can be
 very different from you...

Neighborhood-based training!

- They explicitly use distancebased neighborheods.
- Training with k nearest neighbors, or pairs of points.
- Typically Euclidean neighbors
- But in high *d*, your nearest
 Euclidean neighbor can be
 very different from you...

PART II

On Auto-Encoders and their regularization,

with **one** hidden layer of size d' neurons Functional form (parametric): X_2 X_1 $y = f_{\theta}(\mathbf{x}) = \text{sigmoid} \left(\langle \mathbf{w}, \mathbf{h} \rangle + b \right)$ $\mathbf{\hat{h}} = \operatorname{sigmoid}(\mathbf{\underline{W}}^{\operatorname{hidden}}\mathbf{x} + \mathbf{\underline{b}}^{\operatorname{hidden}})$ $\overset{d' \times d}{d' \times 1}$ **Parameters**: $\theta = \{ \mathbf{W}^{\text{hidden}}, \mathbf{b}^{\text{hidden}}, \mathbf{w}, b \}$ **Optimizing parameters on training set** (training the network): $\theta^{\star} = \arg\min \hat{R}_{\lambda}(f_{\theta}, D_n)$ θ $\mathcal{J}_{\mathrm{MLP}}(\theta) = \left(\sum_{(x,t)\in D} L(t, f_{\theta}(x))\right) + \lambda \Omega(\theta)$ regularization term empirical risk (weight decay) mercredi 5 août 2015

Multi-Layer Perceptron (MLP)

Autoencoders: MLPs used for «unsupervised» representation learning

L(x,r)

- Make output layer * same size as input layer
- Have target = input *

r

 Loss encourages output (reonstruction) to be close to input.

decoding

encoding

reconstruction

hidden h

input X

Autoencoders are also called

- **Autoencoders**
- Auto-associators
- Diabolo networks
- Sandglass-shaped net

lower-dimensional bottleneck

The Diabolo

Auto-Encoders (AE) for learning representations

Auto-Encoders (AE) for learning representations Typical form

conection between Linear auto-encoders and PCA *d_h<d* (bottleneck, undercomplete representation):

- With linear neurons and squared loss
 autoencoder learns same suspace as PCA
- Also true with a single sigmoidal hidden layer, if using linear output neurons with squared loss [Baldi& Hornik 89] and untied weights.
- Won't learn the exact same basis as PCA, but W will span the same subspace.

similarity between Auto-encoders and RBM

Consider an auto-encoder MLP

- with a single hidden layer with sigmoid non-linearity
- and sigmoid output non-linerity.
- Tie encoder and decoder weights: W' = W'.

Autoencoder: $h_i = s(W_i x + b_i)$ $r_i = s(W_i^T h + b_{di})$

Differences: deterministic mapping h is a function of x.

RBM: $P(h_i=1 | v) = s(W_i v + c_i)$ $P(v_{i}=1 | h) = s(W_{i}^{T}h+b_{i})$

stochastic mapping h is a random variable

Greedy Layer-Wise Pre-training with RBMs

Stacking Restricted Boltzmann Machines (RBM) Deep Belief Network (DBN) [Hinton et al. 2006]

Greedy Layer-Wise Pre-training with Auto-Encoders

Stacking basic Auto-Encoders [Bengio et al. 2007]

Supervised fine-tuning

- Initial deep mapping was learnt in an unsupervised way.
- \rightarrow initialization for a supervised task.
- Output layer gets added.
- Global fine tuning by gradient descent on supervised criterion.

Supervised Fine-Tuning is Important

- Greedy layer-wise unsupervised pre-training phase with RBMs or auto-encoders on MNIST
- Supervised phase with or without unsupervised updates, with or without fine-tuning of hidden layers

Classiffication performance on benchmarks:

- Pre-training basic auto-encoder stack better than no pre-training
- Basic auto-encoder stack **almost** matched RBM stack...

Basic auto-encoders not as good feature learners as RBMs...

What's the problem?

- * Traditional autoencoders were for **dimensionality** reduction $(d_h < d_x)$
- * Deep learning success seems to depend on ability to learn **overcomplete representations** ($d_h > d_x$)
- Overcomplete basic autoencoder yields trivial useless solutions: identity mapping!
- Need for alternative regularization/ constraining

Denoising auto-encoders: motivation

(Vincent, Larochelle, Bengio, Manzagol, ICML 2008)

- Simple idea «destroying information» of randomly selected input features; train to restore it.
 > 0-masking noise (now called «dropout» noise)
- Denoising corrupted input is a vastly more challenging task than mere reconcstruction.
- Even in widely over-complete case...
 it must learn intelligent encoding/decoding.
- Will encourage representation that is robust to small perturbations of the input.

 $\mathcal{J}_{\text{DAE}}(\theta) = \sum \mathbb{E}_{q(\tilde{x}|x)} \left[L(x, g(h(\tilde{x}))) \right]$ $x \in D$

- learns robust & useful features
- easier to train than RBM features
- yield similar or better classification performance (as deep net pre-training)

Minimize:

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[L(x, g(h(\tilde{x}))) \right]$$

mercredi 5 août 2015

Denoising auto-encoder (DAE)

Autoencoder training minimizes:

$$\mathcal{J}_{AE}(\theta) = \sum_{x \in D} L(x, g(h(\tilde{x})))$$

Denoising autoencoder training minimizes

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[L(x, g(h(\tilde{x}))) \right]$$

Cannot compute expectation exactly \Rightarrow use stochastic gradient descent, sampling corrupted inputs $\tilde{x} \mid x$

Denoising auto-encoder (DAE)

Autoencoder training minimizes:

$$\mathcal{J}_{AE}(\theta) = \sum_{x \in D} L(x, g(h(\tilde{x})))$$

Denoising autoencoder training minimizes

$$\mathcal{J}_{\text{DAE}}(\theta) = \sum_{x \in D} \mathbb{E}_{q(\tilde{x}|x)} \left[L(x, g(h(\tilde{x}))) \right]$$

Cannot compute expectation exactly \Rightarrow use stochastic gradient descent, sampling corrupted inputs $\tilde{x} \mid x$

Possible corruptions q:

- zeroing pixels at random (now called «dropout» noise)
- additive Gaussian noise
- salt-and-pepper noise

• . . .

Denoising auto-encode Autoencoder training minimizes: $\mathcal{J}_{AE}(\theta) =$ $\sum L(x,$ Denoiting aut encoder training minimizes $\mathcal{J}_{\mathrm{DAE}}(\theta) = \sum \mathbb{E}_{q(\tilde{x}| x)}$ **Possible corruptions q**: zeroing pixels at random Cannot compute expectation exactly (now called «dropout» noise) ⇔ use sto has is gradient descent, sampling corrupted inputs $\tilde{x}|x$ • additive Gaussian noise • salt-and-pepper noise

Learned filters

a) Natural image patches e.g.:

AE with weight decay

Learned filters

.

AE

UX.

Denoising auto-encoders: manifold interpretation

- * DAE learns to «project back» corrupted input onto manifold.
- * Representation $h \approx$ location on the manifold

32

Stacked Denoising Auto-Encoders (SDAE)

Advantages over stacking RBMs

- No partition function, can measure training criterion
- Very flexible: encoder & decoder can use any parametrization (more layers...)
- Performs as well or better than stacking RBMs for usupervised pre-training

Infinite MNIST

Encouraging representation to be insensitive to corruption

- * DAE encourages **reconstruction** to be insensitive to input corruption
- * Alternative: encourage **representation** to be **insensitive**

 $\mathcal{J}_{\text{SCAE}}(\theta) = \sum \left[L(x, g(h(x))) + \lambda \mathbb{E}_{q(\tilde{x}|x)} \left[\|h(x) - h(\tilde{x})\|^2 \right] \right]$ $x \in D$ Reconstruction error stochastic regularization term

* Tied weights i.e. $W' = W^T$ prevent W from collapsing h to 0.

Encouraging representation to be insensitive to corruption

- * DAE encourages reconstruction to be insensitive to input corruption
- Alternative: encourage representation to be insensitive

 $\sum (x, g(h(x)))$

Reconstruction error stochastic regularization term

XEq(: 2

* Tied weights i.e. $W = W^T$ prevent W from collapsing h to 0.

 $\mathcal{J}_{\mathrm{SCAE}}(\theta)$ =

 $\left\| h(x) - h(\tilde{x}) \right\|^2 \right]$

From stochastic to analytic penalty

- * SCAE stochastic regularization term: $\mathbb{E}_{q(\tilde{x}|x)} \left[\|h(x) h(\tilde{x})\|^2 \right]$
- * For small additive noise $\tilde{x}|x = x + \epsilon$, $\epsilon \sim \mathcal{N}(0, \sigma^2 I)$
- * Taylor series expansion yields $h(x + \epsilon) = h(x) + \frac{\partial h}{\partial x}\epsilon + \dots$
- It can be showed that

Contractive Auto-Encoder (CAE)

(Rifai, Vincent, Muller, Glorot, Bengio, ICML 2011)

- * For training examples, encourages both:
 - small reconstruction error
 - representation insensitive to small variations around example

Computational considerations CAE for a simple encoder layer

We defined $\mathbf{h} = h(\mathbf{x}) = s(Wx + b)$

Further suppose: *s* is an elementwise non-linearity

s' its first derivative.

Let
$$J(x) = \frac{\partial h}{\partial x}(x)$$

 $J_j = s'(b + x^T W_j)W_j$ where J_j and W_j represent jth row
CAE penalty is: $\|J\|_F^2 = \sum_{j=1}^{d_h} s'(a_j)^2 \|W_j\|^2$
Compare to L2 weight decay: $\|W\|_F^2 = \sum_{j=1}^{d_h} \|W_j\|^2$ Gradient backprop
wrt parameters:

j=1

Gradient backprop wrt parameters: $O(d_h d)$

Higher order Contractive Auto-Encoder (CAE+H)

(Rifai, Mesnil, Vincent, Muller, Bengio, Dauphin, Glorot; ECML 2011)

- CAE penalizes Jacobian norm
- We could also penalize higher order derivatives
- * Computationally too expensive: second derivative is a 3-tensor, ...
- * Stochastic approach for efficiency: Encourage Jacobian at x and at $x+\varepsilon$ to be the same.

$$\mathcal{J}_{CAE+H} = \sum_{x \in D}^{n} L(x, g(h(x)) + \lambda \left\| \frac{\partial h}{\partial x}(x) \right\|^{2} + \gamma \mathbb{E}_{\epsilon \sim \mathcal{N}(0, \sigma^{2})} \left[\left\| \frac{\partial h}{\partial x}(x) - \frac{\partial h}{\partial x}(x+\epsilon) \right\|^{2} \right]$$

Higher order Contractive Auto-Endder (CAE+H)

(Rifai, Mesnil, Vincent, Muller, Keigio, Dauphin, Glorot; ECML 2011)

- CAE penalizes Jacobian porm
- We could the penalize higher order derivatives
- * Computationally too expensive, second derivative is a 3-tensor,

L(x,g(h(x

 $\gamma \mathbb{E}_{\sim \mathcal{N}(0,\sigma^2)} \left\| \left\| \frac{\partial h}{\partial x}(x) - \frac{\partial h}{\partial x}(x+\epsilon) \right\|^2 \right\|$

* Stochastic approach for efficiency: Encourage Jacocian at x and at $x+\varepsilon$ to be the same.

 $x \in D$

 \mathcal{J}_{CAE+H} =

Learned filters

Learned tangent space

* Jacobian $J_h(x) = \frac{\partial h}{\partial x}(x)$ measures sensitivity of *h* locally around *x*

SVD:

$$\frac{\partial h(\mathbf{x})^T}{\partial \mathbf{x}} = \mathbf{U}\mathbf{S}\mathbf{V}^T$$

Top **singular vectors** are **tangent** directions to which *h* is most sensitive.

$$\mathbf{T}_x = \{\mathbf{U}_{\cdot k} | \mathbf{S}_{kk} > \epsilon\}$$

SVD of $J_h(x) = \frac{\partial h}{\partial x}(x)$

CIFAR-10

Learned tangents CIFAR-10

Contractive Auto-Encoder (singular vectors of $J_h(x)$)

Not based on explicit neighbors or pairs of points!

How to leverage the learned tangents

 Simard et al, 1993 exploited tangents derived from prior-knowledge of image deformations we can use our learned tangents instead.

- Use them to define tangent distance to use in your favorite distance (k-NN) or kernel-based classifier...
- * Use them with tangent propagation when fine-tuning a deep-net classifier to make class prediction insensitive to tangent directions.
 (*Manifold Tangent Classifier*, Rifai et al. NIPS 2011) 0.81% on MNIST
- Moving preferably along tangents allows efficient quality sampling

How to leverage the learned tangents

 Simard et al, 1993 exploited tangents derived from prior-knowledge of image deformations we can use our learned tangents instead.

- Use them to define tangent distance to use in your favorite distance (k-NN) or kernel-based classifier...
- * Use them with tangent propagation when fine-tuning a deep-net classifier to make class prediction insensitive to tangent directions.
 (*Manifold Tangent Classifier*, Rifai et al. NIPS 2011) 0.81% on MNIST
- Moving preferably along tangents allows efficient quality sampling

Analytic v.s. stochastic ?

a) Analytic approximation of stochastic perturbation

- - Equiv. to tiny perturbations: does not probe far away
- + Potentially more efficient. Ex: CAE's Jacobian penalty probes sensitivity in all *d* directions in O(d_h d) With DAE or SCAE it would require encoding *d* corrupted inputs: O(d_h d²)

b) Stochastic approximation of analytic criterion

- + can render practical otherwise computationally infeasible criteria Ex: CAE+H
- - less precise, more noisy

CAE+H actually leverages both

Score matching (Hyvärinen 2005)

We want to learn a p.d.f.: $p_{\theta}(x) = \frac{1}{Z(\theta)}e^{-E_{\theta}(x)}$ with **intractable** partition function Z

Score matching: alternative inductive principle to max. likelihood

Find parameters that minimize objective:

$$J_{SM}(\theta) = \sum_{x \in D} \left(\left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$

$$J_{SM}(\theta) = \sum_{x \in D} \left(\left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$

$$J_{SM}(\theta) = \sum_{x \in D} \left(\left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
$$\|J_E(x)\|^2$$

$$J_{SM}(\theta) = \sum_{x \in D} \left(\left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
$$\|J_E(x)\|^2$$
derivative encouraged to be small: ensures

First derivative encouraged to be small: ensures training points stay close to local minima of E

Score matching variants

Original score matching (Hyvärinen 2005):

$$J_{SM}(\theta) = \sum_{x \in D} \left(\frac{1}{2} \left\| \frac{\partial E}{\partial x}(x) \right\|^2 - \sum_{i=1}^d \frac{\partial^2 E}{\partial x_i^2}(x) \right)$$
Analytic

Regularized score matching (Kingma & LeCun 2010):

$$J_{SMreg,\lambda}(\theta) = J_{SM} + \sum_{x \in D} \lambda \sum_{i=1}^{d} \frac{\partial^2 E}{\partial x_i^2}(x)$$
 Analytic

Denoising score matching (Vincent 2011)

$$J_{DSM,\sigma} = \sum_{x \in D} \left(\mathbf{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)} \left[\frac{1}{2} \left\| \frac{\partial E}{\partial x} (x+\epsilon) - \frac{1}{\sigma^2} \epsilon \right\|^2 \right] \right)$$
Stochastic

DAE training has a deeper relationsip to RBMs

- Same functional form as RBM:
 h(*x*) is expected hidden given visible
 g(**h**) is expected visible given hidden
- With linear reconstruction and squared error,
 DAE amounts to learning the following energy

$$E(\mathbf{x}; \underbrace{\mathbf{W}, \mathbf{b}, \mathbf{c}}_{i}) = -\frac{\langle \mathbf{c}, \mathbf{x} \rangle - \frac{1}{2} \|\mathbf{x}\|^2 + \sum_{j=1}^{d_h} \operatorname{softplus}\left(\langle \mathbf{W}_j, \mathbf{x} \rangle + \mathbf{b}_j\right)}{\sigma^2}$$

using the denoising score matching inductive principle.

 Above energy closely related to free energy of Gaussian-binary RBM (identical for σ=1)

Questions ?