Undirected Graphical Models Aaron Courville, Université de Montréal

(UNDIRECTED) GRAPHICAL MODELS

Overview:

- Directed versus undirected graphical models
- Conditional independence
- Energy function formalism
- Maximum likelihood learning
- Restricted Boltzmann Machine
- Spike-and-slab RBM

Probabilistic Graphical Models

- Graphs endowed with a probability distribution
 - Nodes represent random variables and the edges encode conditional independence assumptions
- Graphical model express sets of conditional independence via graph structure (and conditional independence is useful)
- Graph structure plus associated parameters define joint probability distribution of the set of nodes/variables

Probabilistic Graphical Models

- Graphical models come in two main flavors:
 - I. Directed graphical models (a.k.a Bayes Net, Belief Networks):
 - Consists of a set of nodes with arrows (directed edges) between some of the nodes
 - Arrows encode factorized conditional probability distributions
 - 2. Undirected graphical models (a.k.a Markov random fields):
 - Consists of a set of nodes with undirected edges between some of the nodes
 - Edges (or more accurately the lack of edges) encode conditional independence.
- Today, we will focus almost exclusively on undirected graphs.

PROBABILITY REVIEW: CONDITIONAL INDEPENDENCE

Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y, given the value of Z: for all (i, j, k)

$$P(X = x_i, Y = y_j \mid Z = z_k) = P(X = x_i \mid Z = z_k)$$
$$P(X, Y \mid Z) = P(X \mid Z)P(Y \mid Z)$$

Or equivalently (by the product rule):

$$P(X \mid Y, Z) = P(X \mid Z) \qquad P(Y \mid X, Z) =$$

Why? Recall from the probability product rule

P(X, Y, Z) = P(X | Y, Z)P(Y | Z)P(Z) = P(X | Z)P(Y | Z)P(Z)

Example: P(Thunder | Rain, Lightning) = P(Thunder | Lightning)

$(z_k)P(Y = y_j \mid Z = z_k)$

 $P(Y \mid Z)$

TYPES OF GRAPHICAL MODELS

Probabilistic Models

Undirected

REPRESENTING CONDITIONAL INDEPENDENCE

Some conditional independencies cannot be represented by directed graphical models:

- Consider 4 variables: A, B, C, D
- How do we represent the conditional independences: $(B \perp D \mid A, C)$.

 $\begin{array}{c} (A \perp C) \\ (B \perp D \mid A, C) \end{array}$

$(A \perp C \mid B, D) \atop (B \perp D \mid A, C) \end{cases}$

WHY UNDIRECTED GRAPHICAL MODELS?

Image from "CRF as RNN Semantic Image Segmentation Live Demo'' (http://www.robots.ox.ac.uk/~szheng/crfasrnndemo/)

CONDITIONAL INDEPENDENCE PROPERTIES

- Undirected graphical models:
 - Conditional independence encoded by simple graph separation.
 - Formally, consider 3 sets of nodes: A, B and C, we say $\mathbf{x}_A \perp \mathbf{x}_B \mid \mathbf{x}_C$ iff C separates A and B in the graph.
 - C separates A and B in the graph: If we remove all nodes in C, there is no path from A to B in the graph.

MARKOV BLANKEI

• Markov Blanket: For a given node x, the Markov Blanket is the smallest set of nodes which renders x conditionally independent of all other nodes in the graph.

 $X_{11} - X_{12} -$ • Markov blanket of the 2-d lattice MRF: X₂₁- X_{22}

RELATING DIRECTED AND UNDIRECTED MODELS

• Markov blanket of the 2-d lattice MRF:

) — neighbours of X_{23}

• Markov blanket of the 2-d causal MRF: - parents of X_{23} - children of X_{23} - parents of children of X_{23}

PARAMETERIZING DIRECTED GRAPHICAL MODELS

Directed graphical models:

• Parameterized by local conditional probability densities (CPDs)

 $P(A \mid B)$

• Joint distributions are given as products of CPDs:

$$P(X_1, \dots, X_N) = \prod_{i=0}^N P(X_i \mid X_{\text{pa}})$$

12

(i)

PARAMETERIZING MARKOV NETWORKS: FACTORS

Undirected graphical models:

• Parameterized by symmetric factors or potential functions.

 $\phi(A,B)$

- Generalizes both the CPD and the joint distribution.
- Note: unlike the CPDs, the potential function are not required to normalize.
- **Definition**: Let \mathcal{C} be a set of cliques. For each $c \in \mathcal{C}$, we define a factor (also called potential function or clique potential) ϕ_c as a nonnegative function

 $\phi_c(\boldsymbol{x}_c) \to \mathbb{R}$

where \boldsymbol{x}_c is the set of variables in clique c.

PARAMETERIZING MARKOV NETWORKS: JOINT DISTRIBUTION

• Joint distribution given by a normalized product of factors:

$$P(x_1,\ldots,x_n) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \phi_c(\boldsymbol{x}_c)$$

• Z is the partition function, it's the normalization constant: Z =

• Our 4 variable example:

$$P(a, b, c, d) = \frac{1}{Z} \phi_1(a, b) \phi_2(b, c) \phi_3(c, d) \phi_4(d, a)$$
$$Z = \sum_{a, b, c, d} \phi_1(a, b) \phi_2(b, c) \phi_3(c, d) \phi_4(d, a)$$

c

$\langle \rangle$ $\phi_c(\boldsymbol{x}_c)$ $x_1, \dots, x_n \ c \in \mathcal{C}$

CLIQUES AND MAXIMAL CLIQUES

- What is a clique? A subset of nodes who's induced subgraph is complete
- A maximal clique is one where you cannot add any more nodes and remain a clique

A

В

A

В

OF GRAPHS AND DISTRIBUTIONS

• Interesting fact: any positive distribution whose conditional independencies can be represented with an undirected graph can be parameterize by a product of factors (Hammersley-Clifford theorem).

TYPES OF GRAPHICAL MODELS

Probabilistic Models

Undirected

RELATING DIRECTED AND UNDIRECTED MODELS

- What kind of probability models can be encoded by both a directed and an undirected graphical model.
 - Answer: any probability mode whose cond. indep. relations are consistent with a chordal graph.
- Chordal graph: All undirected cycles of four or more vertices have a chord.
- Chord: Edge that is not part of the cycle but connects two vertices of the cycle.

TYPES OF GRAPHICAL MODELS

Probabilistic Models

Undirected

ENERGY-BASED MODELS

- The undirected models that most interest us are energy-based models.
- We reformulate the factor $\phi(\boldsymbol{x}_c)$ in log-space: $\phi(\boldsymbol{x}_c)$ = or alternatively, $\epsilon(\boldsymbol{x}_c) = -\log \phi(\boldsymbol{x}_c)$, where $\epsilon(\boldsymbol{x}_c) \in \mathbb{R}$.
- Energy-based formulation of joint dist: $P(x_1, \ldots, x_n) = \frac{1}{Z} \exp\left(-E(x_1, \ldots, x_n)\right)$

 $E(x_1,\ldots,x_n)$ is called the energy function.

where
$$Z = \sum_{x_1}$$

$$= \exp(-\epsilon(\boldsymbol{x}_c))$$

 $= \frac{1}{Z} \exp\left(-\sum_{c \in \mathcal{C}} \epsilon_c(\boldsymbol{x}_c)\right)$ $\cdots \sum \exp\left[-E(x_1,\ldots,x_n)\right]$

LOG-LINEAR MODEL

- Log-linear models are a type of energy-based model with a particular, linear, parametrization.
- In log-linear models, for clique c, the coresponding element of the energy function $\epsilon_c(\boldsymbol{x}_c)$ is composed of:
 - I. A parameter w_c
 - 2. A feature of the observed data $f_c(\boldsymbol{x}_c)$

• The joint distribution is given by $P(x_1, \dots, x_n) = \frac{1}{Z} \exp\left(-\sum_{c \in C} w_c f_c(\boldsymbol{x}_c)\right)$

Maximum likelihood learning in the context of a fully observable MRF.

$$\boldsymbol{w}^{\mathrm{ML}} = \underset{\boldsymbol{w}}{\operatorname{argmax}} \log \prod_{i=1}^{\mathcal{D}} p(\boldsymbol{x}^{(i)}; \boldsymbol{w})$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \sum_{i=1}^{\mathcal{D}} \left(\sum_{c} \log \phi_c(\boldsymbol{x}_c^{(i)}; \boldsymbol{w}_c) - \boldsymbol{x}_c^{(i)} \right)$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \left[\left(\sum_{i=1}^{\mathcal{D}} \sum_{c} \log \phi_c(\boldsymbol{x}_c^{(i)}; \boldsymbol{w}_c) \right) - |\boldsymbol{x}_c^{(i)}| \right]$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \left[\left(\sum_{i=1}^{\mathcal{D}} \sum_{c} w_c f_c(\boldsymbol{x}_c^{(i)}) - |\boldsymbol{x}_c^{(i)}| \right) \right]$$

$$= \underset{\boldsymbol{w}}{\operatorname{argmax}} \left[\left(\sum_{i=1}^{\mathcal{D}} \sum_{c} w_c f_c(\boldsymbol{x}_c^{(i)}) - |\boldsymbol{x}_c^{(i)}| \right) \right]$$

 $\log Z(\boldsymbol{w})$

$-\left|\mathcal{D}\right|\log Z(oldsymbol{w}) ight|$

 $D | \log Z(\boldsymbol{w}) |$ not decompose

• In general, there is no closed form solution for the optimal parameters.

$$\log Z(\boldsymbol{w}) = \log \sum_{\boldsymbol{x}} \exp\left(\sum_{c} w_{c} f_{c}\right)$$

• We can compute a gradient of the partition function.

$$\frac{\partial}{\partial w_c} \log Z(\boldsymbol{w}) = \frac{\partial}{\partial w_c} \log \left(\sum_{\boldsymbol{x}} \exp \left(\sum_{c'} e^{\boldsymbol{x}_c} \exp \left(w_c f_c(\boldsymbol{x}_c) \right) f_c(\boldsymbol{x}_c) \right) \right) \right)$$
$$= \frac{\sum_{\boldsymbol{x}_c} \exp \left(w_c f_c(\boldsymbol{x}_c) \right) f_c(\boldsymbol{x}_c) \right)}{\sum_{\boldsymbol{x}_c} \exp \left(\sum_c w_c f_c(\boldsymbol{x}_c) \right)}$$
$$= \mathbb{E}_{p(\boldsymbol{x}_c; w_c)} \left[f_c(\boldsymbol{x}_c) \right]$$

 $f_c(\boldsymbol{x}_c)$

 $\left(\frac{\boldsymbol{x}_{c'}}{\boldsymbol{x}_{c}} f_{c'}(\boldsymbol{x}_{c'}) \right)$

• The gradient of the log-likelihood

 $oldsymbol{r}_{c'}^{(i)}ig) - \mathcal{D}\log Z(oldsymbol{w})$

- $\log Z(oldsymbol{w})$

 $\mathbb{E}_{p(\boldsymbol{x}_{c};w_{c})}\left[f_{c}(\boldsymbol{x}_{c})
ight]$

model term often intractable (e.g. fully observable x)

• How do we estimate the intractable expectation from the model term (due to the partition function contribution of the gradient)?

$$\frac{\partial}{\partial w_c} \log Z(\boldsymbol{w}) = \mathbb{E}_{p(\boldsymbol{x}_c; w_c)} \left[f_c(\boldsymbol{x}_c; w_c) \right]$$

- We can sometimes use approximations methods such as pseudo-likelihood.
- More generally we can use Monte Carlo (i.e. sampling) methods to estimate this expectation.
 - This comes with some disadvantages, more on this when we discuss restricted Boltzmann machines.

 $|\boldsymbol{x}_{c})|$

Restricted Boltzmann Machines An Introduction

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

 $= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} -$

 partition function (intractable)

 $\sum_{i} b_{j}h_{j}$

MARKOV NETWORK VIEW

Topics: Markov network (with vector nodes)

 The notation based on an energy function is simply an alternative to the representation as the product of factors

MARKOV NETWORK VIEW

Topics: Markov network (with scalar nodes)

• The scalar visualization is more informative of the structure within the vectors

pair-wise factors

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

 $= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} -$

 partition function (intractable)

 $\sum_{i} b_{j}h_{j}$

INFERENCE

Topics: conditional distributions

$$p(\mathbf{h}|\mathbf{x}) = \prod_{j} p(h_{j}|\mathbf{x})$$

$$p(h_{j} = 1|\mathbf{x}) = \frac{1}{1 + \exp(-(b_{j} + \mathbf{W}_{j}.\mathbf{x}))}$$

$$= \operatorname{sigm}(b_{j} + \mathbf{W}_{j}.\mathbf{x})$$

$$\int_{j \text{ th row of } \mathbf{V}} p(\mathbf{x}|\mathbf{h}) = \prod_{k} p(x_{k}|\mathbf{h})$$

$$p(x_{k} = 1|\mathbf{h}) = \frac{1}{1 + \exp(-(c_{k} + \mathbf{h}^{\top}\mathbf{W}_{\cdot k}))}$$

 $= \operatorname{sigm}(c_k + \mathbf{h}^\top \mathbf{W}_{\cdot k})$

N

k th column of **W**

 $p(\mathbf{h}|\mathbf{x})$

•

•

· · · · ·

·

.

 $p(h_j = 1 | \mathbf{x})$

33

FREE ENERGY

Topics: free energy

• What about $p(\mathbf{x})$?

34 $\mathbf{n}))/Z$:)) |Z|

 $p(\mathbf{x})$

.

•

35

RESTRICTED BOITZMANN MACHINE

MAXIMUM LIKELIHOOD TRAINING

Topics: training objective

• To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T}\sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T}\sum_{t} -\log p(\mathbf{x}^{(t)})$$

• We'd like to proceed by stochastic gradient descent

$$\frac{\partial - \log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] - \left[\mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \right]$$
positive phase negative phase

hard to compute 37

Topics: contrastive divergence, negative sample

- Idea:
 - I. replace the expectation by a point estimate at $\tilde{\mathbf{x}}$
 - 2. obtain the point $\tilde{\mathbf{x}}$ by Gibbs sampling

3. start sampling chain at $\mathbf{x}^{(t)}$

Topics: contrastive divergence, negative sample

$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$

39

Topics: contrastive divergence, negative sample

$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \, \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \qquad \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \mathbf{h})}{\partial \theta}$$

40

TRAINING

Topics: training objective

• To train an RBM, we'd like to minimize the average negative log-likelihood (NLL)

$$\frac{1}{T}\sum_{t} l(f(\mathbf{x}^{(t)})) = \frac{1}{T}\sum_{t} -\log p(\mathbf{x}^{(t)})$$

• We'd like to proceed by stochastic gradient descent

-RIVATION OF THE I FARNING RULF

Topics: contrastive divergence

• Derivation of $\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}$ for $\theta = W_{jk}$ $\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{jk}} = \frac{\partial}{\partial W_{jk}} \left(-\sum_{jk} W_{jk} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \right)$

$$= -\frac{\partial}{\partial W_{jk}} \sum_{jk} W_{jk} h_j x_k$$

$$=-h_j x_k$$

 $\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) = -\mathbf{h} \mathbf{x}^{\top}$

DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

• Derivation of $\mathbb{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \Big| \mathbf{x} \right]$ for $\theta = W_{jk}$

$$\mathbb{E}_{\mathbf{h}}\left[\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial W_{jk}}\Big|\mathbf{x}\right] = \mathbb{E}_{\mathbf{h}}\left[-h_{j}x_{k}\Big|\mathbf{x}\right] = \sum_{h_{j}\in\{0,1\}} -h_{j}x_{k}p(h_{j})$$

$$= -x_k p(h_j = 1 | \mathbf{x})$$

$$\mathbf{h}(\mathbf{x}) \stackrel{\text{def}}{=} \begin{pmatrix} p(h_1 = 1 | \mathbf{x}) \\ \dots \\ p(h_H = 1 | \mathbf{x}) \end{pmatrix}$$

$$= \operatorname{sigm}(\mathbf{b} + \mathbf{c})$$

 $E_{\mathbf{h}}[\nabla_{\mathbf{W}}E(\mathbf{x},\mathbf{h})|\mathbf{x}] = -\mathbf{h}(\mathbf{x}) \mathbf{x}^{\top}$

 $n_j|\mathbf{x})$

DERIVATION OF THE LEARNING RULE

Topics: contrastive divergence

• Given $\mathbf{x}^{(t)}$ and $\mathbf{\tilde{x}}$ the learning rule for $\theta = \mathbf{W}$ becomes

$$\mathbf{W} \iff \mathbf{W} - \alpha \left(\nabla_{\mathbf{W}} - \log p(\mathbf{x}^{(t)}) \right)$$

$$\iff \mathbf{W} - \alpha \left(\mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \left| \mathbf{x}^{(t)} \right] \right] \right]$$

 $[\mathbf{x}, \mathbf{h})]\Big)$ $,\mathbf{h})\left| ilde{\mathbf{x}}
ight] \Big)$

CD-K: PSEUDOCODE

Topics: contrastive divergence

I. For each training example $\mathbf{x}^{(t)}$

i. generate a negative sample $\mathbf{\tilde{x}}$ using k steps of Gibbs sampling, starting at $\mathbf{x}^{(t)}$

ii. update parameters

$$\mathbf{W} \iff \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \ \tilde{\mathbf{x}}^{\top} \right)$$
$$\mathbf{b} \iff \mathbf{b} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) - \mathbf{h}(\tilde{\mathbf{x}}) \right)$$
$$\mathbf{c} \iff \mathbf{c} + \alpha \left(\mathbf{x}^{(t)} - \tilde{\mathbf{x}} \right)$$

2. Go back to 1 until stopping criteria

Topics: contrastive divergence

- CD-k: contrastive divergence with k iterations of Gibbs sampling
- In general, the bigger k is, the less **biased** the estimate of the gradient will be
- In practice, k=1 works well for pre-training

47 PERSISTENT CD (PCD) (TIELEMAN, ICML 2008) $\mathbf{\dot{x}}^{k} = \mathbf{\tilde{x}}$ X negative sample

Topics: persistent contrastive divergence

• Idea: instead of initializing the chain to $\mathbf{x}^{(t)}$, initialize the chain to the negative sample of the last iteration

EXAMPLE OF DATA SET: MNIST

3	8	6	9	6	4	5	3	8	ų	ς	2	3	8	4	
l	5	Ø	5	9	7	Ч		0	3	0	وا	2	б	9	
1	J	6	8	0	り	1	6	8	q	0	3	8	z	2	
8	ψ	4		3	٩	K			0	6	Ş	5	0		
F	2	7	3		Ц	0	5	0	6	8	7	6	z	9	
4	0	6	1	٩	2	L	3	9	Ц	1	كر	6	6		
L	8	6	9	7	0	9		6	2	જ	3	6	4	9	
ŝ	6	z	7	д	8	6	9	1	7	6	0	9	6	7	

FILTERS (LAROCHELLE ET AL., JMLR2009)

C	1		2	•		0			•	12		1		1
a.	(10)	P.	4	1	Č		1		5	JA.	T	N.	1	
12	2			•	•			(9)	i	e		0	100	i
.,	•		T:	2	(6	1	U.	(3)	2.	0	0	2	6
1	12	1	•	6	3	2	3	9	4	B	2	X	1-	
ik.	•	1	.*	0	10	14	4	2	Õ	The second	9	1	Ter.	1
(• .		1	•	0	1	(1	-		D	•		2	1
5	()		-10		-	0	-			*			E'	2

RESTRICTED BOLTZMANN MACHINE

Topics: RBM, visible layer, hidden layer, energy function

Energy function:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

 $= -\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} -$

 partition function (intractable)

 $\sum_{i} b_{j}h_{j}$

GAUSSIAN-BERNOULLI RBM

Topics: Gaussian-Bernoulli RBM

- Inputs **X** are unbounded reals
 - add a quadratic term to the energy function

$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h} + \frac{1}{2} \mathbf{x}^{\top} \mathbf{x}$$

- only thing that changes is that $p(\mathbf{x}|\mathbf{h})$ is now a Gaussian distribution with mean $\mu = \mathbf{c} + \mathbf{W}^{\mathsf{T}} \mathbf{h}$ and identity covariance matrix
- recommended to normalize the training set by
 - subtracting the mean of each input
 - dividing each input x_k by the training set standard deviation
- should use a smaller learning rate than in the regular RBM

T	6	働	8	-	1	The second	1	節	1	志	1	Call and	10	123
	营	\hat{H}_{2}	1	1	t)	望	T.	To the	B	1 St	1	S	E	C.
16	1	國	13	The	T	T	M	S.	3	I	Q)	RE	D	1
E.	22	•	25	Se .	-	Bl	30	1	the second	a.	-	1	(China	
酒	•	•	They	No.	10-	•	1	The second	in the	13	認	(D)	No.	1
The second	1	E.	130	Se se	20	Ja.	à	12	20	2	11	17.1	Re	
TEL.	a	E	R.			3	1	5	697	P	(B)	(The	1/10	1
S	14	35		10	-	* 2	•	(pl)	51	4	35	•	Ed	
47	13		The second	The second	1	The	1	The second	The second	T	"Is		The second	
•	The second	12	y	•	to	The second	4		B	E.	1	10	(A)	
•	13	(SA)		3 mil	Ī	1	50	1	10	1	·1	Y	E	

Basic Idea \Rightarrow Each hidden unit *i* possesses:

- I. A binary-valued latent spike $h_i \in [0,1]$,
- **2**. A real-valued latent slab $s_i \in \mathcal{R}$.

Spike-and-Slab RBM

ssRBM energy function: lacksquare

$$E(v,s,h) = -\sum_{i=1}^{N} v^{T} W_{i} s_{i} h_{i} + \frac{1}{2} v^{T} \Lambda v + \frac{1}{2} \sum_{i=1}^{N} \alpha_{i} s_{i}^{2} - \sum_{i=1}^{N} \alpha_{i} \mu_{i} s_{i} h_{i} + \sum_{i=1}^{N} \alpha_{i} \mu_{i}^{2} h_{-} \sum_{i=1}^{N} b_{i} h_{i}$$

ssRBM joint probability density: \bullet

$$p(v, s, h) = \frac{1}{Z} \exp\left\{-E(v, s, h)\right\}$$

Conditional of visible variables v given h:

$$p(v \mid h) = \frac{1}{P(h)} \frac{1}{Z} \int \exp\left\{-E(v, s, h)\right\} ds = \mathcal{N}\left(C_{v \mid h}\right)$$

where
$$C_{v|h} = \left(\Lambda - \sum_{i}^{N} \right)^{i}$$

Models both mean and covariance of the conditional $p(v \mid h)$. \odot

 $\overline{\mathbf{i}}$ Cannot perform efficient block Gibbs sampling:

$$v \sim p(v \mid h) \neq \prod_j p(v_j \mid h)$$

 $\left(C_{v|h}\sum_{i=1}^{N}W_{i}\mu_{i}h_{i}, C_{v|h}\right)$

Conditionals II:
$$p(v|s,h)$$
 &

Conditional dist. of the visibles v given s and h:

$$p(v \mid s, h) = \frac{1}{p(s, h)} \frac{1}{Z} \exp\{-E(v, s, h)\} = \mathcal{N}\left(\left(\Lambda + \sum_{i=1}^{N} \Phi_i h_i\right)^{-1} \sum_{i=1}^{N} W_i s_i\right)^{-1} \sum_{i=1}^{N} W_i s_i$$

While $p(v \mid h) \neq \prod_d p(v_d \mid h)$ given s: $p(v \mid s, h) = \prod_d p(v_d \mid s, h)$. •

Conditional dist. of the slabs s given visibles v and spikes h:

$$p(s \mid v, h) = \prod_{i=1}^{N} p(s_i \mid v, h) = \prod_{i=1}^{N} \mathcal{N}\left(\left(\alpha_i^{-1} v^T W_i + \mu_i\right) h_i , \alpha_i^{-1}\right)$$

Sampling from both p(v|s,h) and p(s|v,h) is simple and efficient.

p(s | v,h)

Conditionals III: p(h|v)

Conditional of the spike variables h given v: $P(h|v) = \prod_i P(h_i|v)$

$$P(h_i = 1 \mid v) = \text{sigmoid} \left(\frac{1}{2} \alpha_i^{-1} (v^T W_i)^2 - \frac{1}{2} v^T \Phi_i v + \sqrt{\frac{1}{2}} v^T \Phi_i v + \sqrt{\frac{1}{$$

Activation of each spike is controlled by both mean and covariance info. ullet

- Compare this to the analogous mcRBM conditionals: •
 - **Covariance units:** $P(h_i^c = 1 | v) = \text{sigmoid} \left(-\frac{1}{2} \left(v^T W_i^c \right)^2 b_i^c \right),$
 - Mean units: $P(h_i^m = 1 | v) = \text{sigmoid} \left(v^T W_i^m + b_i^m \right)$

 $\left(+ v^T W_i \mu_i + b_i \right)$

linear in v

ssRBM Inference and Learning

• By sampling s, we define a 3-phase block Gibbs sampler

1.
$$P(h \mid v) = \prod_{i=1}^{N} \text{sigmoid} \left(\frac{1}{2}\alpha_i^{-1}(v^T W_i)^2 - \frac{1}{2}v^T \Phi_i v + v^T W_i \mu_i\right)$$

2.
$$p(s \mid v, h) = \prod_{i=1}^{N} \mathcal{N} \left(\left(\alpha_i^{-1} v^T W_i + \mu_i \right) h_i , \alpha_i^{-1} \right).$$

3.
$$p(v \mid s, h) = \mathcal{N}\left(\left(\Lambda + \sum_{i=1}^{N} \Phi_i h_i\right)^{-1} \sum_{i=1}^{N} W_i s_i h_i , \left(\Lambda + \sum_{i=1}^{N} \Phi_i h_i\right)^{-1} \right)$$

• Learning via stochastic maximum likelihood.

 $+b_i$

 $\Phi_i h_i \bigg)^{-1} \bigg)$

Sampling from the Convolutional ssRBM

Used the convolutional setup of Krizhevsky (2010)

• Combines both (9x9) convolutional and (32x32) global weight vectors

Sampling from the Convolutional ssRBM

Samples from the Spike-and-slab RBM:

OTHER TYPES OF OBSERVATIONS

Topics: extensions to other observations

- Extensions support other types:
 - real-valued: Gaussian-Bernoulli RBM
 - Binomial observations:
 - Rate-coded Restricted Boltzmann Machines for Face Recognition.
 Yee Whye Teh and Geoffrey Hinton, 2001
 - Multinomial observations:
 - Replicated Softmax: an Undirected Topic Model. Ruslan Salakhutdinov and Geoffrey Hinton, 2009
 - Training Restricted Boltzmann Machines on Word Observations. George Dahl, Ryan Adam and Hugo Larochelle, 2012
 - and more (see course website)