Visual features: From Fourier to Gabor

Roland Memisevic

Deep Learning Summer School 2015, Montreal

Hubel and Wiesel, 1959

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Alexnet

ICA

	-						F	T			1
,							V	,		1	
							\checkmark				
	1										
7	1										
-											
/											
,											

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Sparse coding

(Olshausen, Field)

Regularized Autoencoder

Uncontractive autoencoder

These are features trained with a contractive autoencoder with negative contraction penalty.

K-means

Fourier (1768-1830)

Gabor (1900-1979)

Translation invariance and locality

- Almost all structure in natural images is position-invariant and local. Therefore:
- Almost all low-level vision operations are based on patches.
- The universal mathematical framework for understanding the structure in images is the Fourier transform.

Filtering / Convolution 2-d (aka LSI system)

a

$W(-1,-1)$	$W(-1,0)$	$W(-1,1)$
$W(0,-1)$	$W(0,0)$	$W(0,1)$
$W(1,-1)$	$W(1,0)$	$W(1,1)$

Figures from Hyvarinen, et al., 2009.

Convolution 1-d (Wikipedia)

Phasors

- The phasor is the complex valued signal

$$
p(t)=\exp (i \omega t)=\cos \omega t+i \sin \omega t, \quad i=\sqrt{-1}
$$

It represents sine and cosine in a single signal. (This is useful because all sine waves of a given frequency live in the same, 2-dimensional subspace.)

- Phasors are eigenfunctions of translation:

$$
p(t-z)=e^{i \omega(t-z)}=e^{i \omega t} e^{-i \omega z}=e^{-i \omega z} p(t)
$$

Digression: Complex numbers

- Complex numbers are "2d-vectors" with some special arithmetic, most of which is related to Euler's formula:

$$
e^{i \varphi}=\cos \varphi+i \sin \varphi
$$

- Most applications rely on jumping back-and-forth between cartesian and polar coordinates:

$$
\begin{aligned}
& a=r \cos (\varphi) \\
& b=r \sin (\varphi) \\
& r=|c|=\sqrt{a^{2}+b^{2}}: \text { "amplitude"" } \\
& \varphi=\arg (c)=\operatorname{atan}\left(\frac{b}{a}\right): \text { "phase" }
\end{aligned}
$$

Digression: Complex numbers

- Addition is the same as for 2d vectors.
- Multiplication is standard arithmetic in the polar representation:

$$
c_{1} \cdot c_{2}=r_{1} e^{i\left(\varphi_{1}\right)} \cdot r_{2} e^{i\left(\varphi_{2}\right)}=r_{1} \cdot r_{2} \cdot e^{i\left(\varphi_{1}+\varphi_{2}\right)}
$$

Thus, multiplication is stretching + rotation.

- Multiplying a number by a complex number c of length 1.0, ie.

$$
c=e^{i \alpha}
$$

amounts to rotating the number by α degrees counter clock-wise around the origin.

Digression: Complex numbers

- Other useful equations:
- Conjugation is reflection at the real axis:

$$
\bar{c}=a-i b=r \exp (-i \varphi)
$$

- It follows that $\bar{c} c=|c|^{2}$ and $\frac{1}{2}(\bar{c}+c)=\operatorname{real}(c)$
- The standard inner product uses conjugation:

$$
\langle\vec{c}, \vec{d}\rangle=\sum_{i} \bar{c}_{i} d_{i}
$$

- Why? Because now $\langle\vec{c}, \vec{c}\rangle=\|\vec{c}\|^{2}$
- In practice, use the function atan2() to compute the atan for polar representations.
- End of digression -

Phasors

- The phasor is the complex valued signal

$$
p(t)=\exp (i \omega t)=\cos \omega t+i \sin \omega t, \quad i=\sqrt{-1}
$$

It represents sine and cosine in a single signal. (This is useful because all sine waves of a given frequency live in the same, 2-dimensional subspace.)

- Phasors are eigenfunctions of translation:

$$
p(t-z)=e^{i \omega(t-z)}=e^{i \omega t} e^{-i \omega z}=e^{-i \omega z} p(t)
$$

Phasors are eigenfunctions of convolution

$$
\begin{aligned}
(p * h)(t) & =\sum_{z=-\infty}^{\infty} h(z) p(t-z) \\
& =\left(\sum_{z=-\infty}^{\infty} h(z) e^{-i \omega z}\right) e^{i \omega t} \\
& =:(H(\omega) p)(t)
\end{aligned}
$$

- The constant $H(\omega)$ is called frequency response of the filter h.
- Its absolute value $|H(\omega)|$ is called amplitude response, its phase $\arg H(\omega)$ is called phase response.

Discrete Fourier Transform (1d)

- The Fourier transform decomposes a signal into phasors:

Inverse discrete Fourier Transform 1d

$$
s(t)=\frac{1}{T} \sum_{k=0}^{T-1} S(k) e^{i \frac{2 \pi}{T} t k} \quad t=0, \ldots, T-1
$$

Discrete Fourier Transform (DFT) 1d

$$
S(k)=\sum_{t=0}^{T-1} s(t) e^{-i \frac{2 \pi}{T} k t} \quad k=0, \ldots, T-1
$$

- $S(\omega)$ is called spectrum of the signal.
- $|S(\omega)|$ is called amplitude spectrum, $\arg S(\omega)$ is called phase spectrum.

2d waves

- How to generalize the concept of oscillation to 2 d ?
- Oscillations are functions of a scalar t. So first assign a scalar to image positions, then pass this scalar to a phasor. For example,

$$
S(\boldsymbol{y})=\exp \left(i \omega^{\mathrm{T}} \boldsymbol{y}\right)
$$

where ω is called frequency vector.

- $\boldsymbol{\omega}^{\mathrm{T}} \boldsymbol{y}$ grows in the direction of $\boldsymbol{\omega}$ and is constant in the direction orthogonal to ω.

2d waves

$$
\vec{\omega}=[-0.3 ; 1.0]
$$

$$
\vec{\omega}=[0.0 ; 0.5]
$$

Separability of complex waves

- Complex valued waves are separable:

$$
\begin{aligned}
S(\boldsymbol{y}) & =\exp \left(i\left(\omega^{T} \boldsymbol{y}\right)\right) \\
& \left.=\exp \left(i \omega_{1} y_{1}+i \omega_{2} y_{2}\right)\right) \\
& =\exp \left(i \omega_{1} y_{1}\right) \cdot \exp \left(i \omega_{2} y_{2}\right) \\
& =S_{1}\left(y_{1}\right) \cdot S_{2}\left(y_{2}\right)
\end{aligned}
$$

- The same is not true of real valued waves.

DFT on images

Inverse Discrete Fourier Transform in 2d

$$
s(m, n)=\frac{1}{M N} \sum_{k=0}^{M-1} \sum_{\ell=0}^{N-1} S(k, \ell) e^{i 2 \pi\left(\frac{k m}{M}+\frac{\ell n}{N}\right)}
$$

Discrete Fourier Transform (DFT) in 2d

$$
S(k, \ell)=\sum_{m=0}^{M-1} \sum_{n=0}^{N-1} s(m, n) e^{-i 2 \pi\left(\frac{k m}{M}+\frac{\ell n}{N}\right)}
$$

Spectrum example

More amplitude spectra (average over cross-sections on the right)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Torralba, Oliva; 2003

PCA and Fourier transform (1d)

- Due to translation invariance, the covariance matrix of natural images shows very strong structure:

cov 1-d scan lines

cov of images

PCA and Fourier transform (1d)

- A (covariance) matrix whose entries are translation invariant has phasors as eigenvectors:

$$
\begin{aligned}
(C p)(t) & =\sum_{t^{\prime}} \operatorname{cov}\left(t, t^{\prime}\right) e^{i \omega t^{\prime}} \\
& =\sum_{t^{\prime}} c\left(t-t^{\prime}\right) e^{i \omega t^{\prime}} \\
& =\sum_{z} c(z) e^{i \omega t} e^{-i \omega z} \\
& =\left[\sum_{z} c(z) e^{-i \omega z}\right] e^{i \omega t}=: \lambda_{\omega} e^{i \omega t}
\end{aligned}
$$

- (In fact, multiplying by the covariance matrix is a convolution.)

PCA and Fourier transform (1d)

- Covariance matrices are symmetric $(c(z)=c(T-z))$
- So the eigenvalues are real:

$$
\begin{aligned}
& \sum_{t^{\prime}} \operatorname{cov}\left(t, t^{\prime}\right) e^{i \omega t^{\prime}} \\
= & {\left[\sum_{z} c(z) e^{-i \omega z}\right] e^{i \omega t} } \\
= & {\left[c(0)+\sum_{z=1}^{\frac{T-1}{2}} c(z)\left(e^{-i \omega z}+e^{i \omega z}\right)\right] e^{i \omega t} } \\
= & {\left[c(0)+2 \sum_{z=1}^{\frac{T-1}{2}} c(z) \cos (\omega z)\right] e^{i \omega t} }
\end{aligned}
$$

PCA and Fourier transform (2d)

- In 2d:

$$
\begin{aligned}
(C w)(t) & =\sum_{x^{\prime}, y^{\prime}} \operatorname{cov}\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right) e^{i\left(\omega_{1} x^{\prime}+\omega_{2} y^{\prime}\right)} \\
& =\sum_{x^{\prime}, y^{\prime}} c\left(x-x^{\prime}, y-y^{\prime}\right) e^{i\left(\omega_{1} x^{\prime}+\omega_{2} y^{\prime}\right)} \\
& =\sum_{\xi, \eta} c(\xi, \eta) e^{i\left(\omega_{1} x-\omega_{1} \xi+\omega_{2} y-\omega_{2} \eta\right)} \\
& =\left[\sum_{\xi, \eta} c(\xi, \eta) e^{-i\left(\omega_{1} \xi+\omega_{2} \eta\right)}\right] e^{i\left(\omega_{1} x+\omega_{2} y\right)}
\end{aligned}
$$

PCA example (first 96 EVs)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Fourier transform and convolution

Convolution in the time-domain is multiplication in the frequency domain.

- "Proof:" The Fourier transform of the convolved signal, $g(t)=s(t) * h(t)=\sum_{k} h(k) \cdot s(t-k)$, can be written

$$
\begin{aligned}
G(\omega) & =\sum_{t}\left[\sum_{k} h(k) \cdot s(t-k)\right] e^{-i \omega t} \\
& =\sum_{t} \sum_{k} h(k) \cdot e^{-i \omega k} \cdot s(t-k) e^{-i \omega(t-k)} \\
& =\sum_{k} h(k) \cdot e^{-i \omega k} \cdot \sum_{t} s(t-k) e^{-i \omega(t-k)} \\
& =H(\omega) \cdot S(\omega)
\end{aligned}
$$

- This can be used to speed up conv net inference and training using FFT (eg. Mathieu, et al.)

Fourier transform and convolution

Multiplication in the time-domain is convolution in the frequency domain.

- This is the source of ringing, aliasing and leakage effects.

DFT leakage

- We can think of the DFT of a finite signal as the DFT of a periodic signal after multiplying it by a rectangular window.
- The DFT spectrum you get can be thought of as the spectrum of the periodic signal convolved with a sinc-function.
- Because of the zero-crossings of the sinc-function the convolution will have no effect on signal components whose frequencies are integer multiples of the window length.
- For any other components, the convolution will generate additional components in the spectrum.
- This effect is known as leakage.

Leakage

Leakage

Leakage

Leakage

Leakage

Windowing

- Leakage cannot be avoided.
- But a window other than the box-window may lead to different, possibly less undesirable, leakage properties.

Leakage with box window

Leakage with box window

Leakage with Gaussian window

Leakage with Gaussian window

Leakage with small Gaussian window

Leakage with small Gaussian window

Windowing and Short Time Fourier Transform

- An application of window functions is the Short-Time Fourier Transform (STFT).
- Fourier-transform the signal locally, then view the resulting set of spectra as a function of time or space.
- In 1d, the result (sometimes just amplitudes) is called spectrogram.
- An STFT using a Gaussian window is also called Gabor transform.

Gabor feature

Wave:

figures by Javier Movellan

Gabor feature

Window:

figures by Javier Movellan

Gabor feature

gaborfeature $\left(K, \sigma, x_{0}, y_{0}, \gamma, u, v, P\right)=$
$K \exp \left(-\frac{1}{\sigma^{2}}\left(\left(x-x_{0}\right)^{2}+\gamma^{2}\left(y-y_{0}\right)^{2}\right)\right) \cdot \exp (i 2 \pi(u x+v y)+P)$
figures by Javier Movellan

The uncertainty principle

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

In 2d: orientation uncertainty

a

b

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Frequency channels

- In many applications, local Gabor features are used as filters, ie. they are scanned across the image.
- This naturally raises the question:
- What is the amplitude response of a Gabor filter?

Frequency channels

- In many applications, local Gabor features are used as filters, ie. they are scanned across the image.
- This naturally raises the question:
- What is the amplitude response of a Gabor filter?
- It is a localized blob in the frequency domain, because the Fourier transform of a phasor times a Gaussian will be a delta-peak convolved with a Gaussian.
- So Gabor filters are oriented bandpass filters.

A spectrogram (top) of an utterance

- (from Bishop, 2006)
- The visual analog of the spectrogram is the feature map (a 3-dimensional object).

Biological complex cells

- also (Hubel and Wiesel, 1959)
- A Fourier feature pair with 90 deg phase difference is known as quadrature pair.
- Conv nets do not typically use these. Instead they pool (after rectifying), which has a similar effect.

Why PCA yields Fouriers (part II)

- Assume that the data density is invariant wrt. to orthogonal transformations T, then

$$
\begin{aligned}
& \log p(\boldsymbol{x})=\log p(T \boldsymbol{x}) \\
\Longleftrightarrow & \boldsymbol{x}^{\mathrm{T}} \Sigma^{-1} \boldsymbol{x}^{\mathrm{T}}=\boldsymbol{x}^{\mathrm{T}} T^{\mathrm{T}} \Sigma^{-1} T \boldsymbol{x} \quad \forall \boldsymbol{x} \\
\Longleftrightarrow & \Sigma^{-1}=T^{\mathrm{T}} \Sigma^{-1} T \\
\Longleftrightarrow & T \Sigma^{-1}=\Sigma^{-1} T
\end{aligned}
$$

- Since Σ^{-1} commutes with T, it has to have the same eigenvectors (which for translations are Fourier components).

Why feature learning yields Fouriers

Circulants

A circulant matrix

Orthogonal transformations

$$
U^{\mathrm{T}} T U=\left[\begin{array}{lll}
R_{1} & & \\
& \ddots & \\
& & R_{k}
\end{array}\right] \quad R_{i}=\left[\begin{array}{cc}
\cos \left(\theta_{i}\right) & -\sin \left(\theta_{i}\right) \\
\sin \left(\theta_{i}\right) & \cos \left(\theta_{i}\right)
\end{array}\right]
$$

Higher layers?

A permutation matrix

