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I know what you are thinking…



Big Data (in the mass culture)



Big Data (a pessimistic vision)

• Large volumes, Large 
diversification,  High Speed:

– 3V initial paradigm 

• Volume

• Velocity

• Variety



Big Data (an optimistic vision)

• Add more V:

– Veracity 

– Variability



Big Data (for real life)

The last V:

•Value



How to turn data into value (Reality)

• Data Mining

• Querying

• Exploratory Analysis
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Renewable energy: 
a strategic sector for all European countries

It contributes to reducing energy dependency from foreign countries and
pollution emission.

In this sector there is abundance of data (generated by production plants) to
organize, model and analyze in order to create value.

Issues:

- Data produced continuously at high rate

- Lack of scalability of the underlying algorithms for storing/analyzing these data

- Complexity of the data (heterogeneity)

- Presentation of results and interpretation by non-technical domain experts



The data mining task
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Energy sector has its own market organization regulated by demand /
offer rules which define the hourly / daily price of the energy.

Each single power source may influence the final clearing price.

Thus, it is important

- to monitor the local / global production and consumption of energy

- store historical data,

- design new and reliable prediction models.



The data mining task
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Specific goal: develop a method to predict one day ahead production
(hour by hour) of heterogeneous sources (photovoltaic, wind,
biomass, etc...)

Data:
- Historical data and real time data of production, continuously produced at

regular time intervals by sensors placed on each plant of interest
- Weather predictions gathered from NWP (Numerical Weather Prediction) models
- Irradiance predictions

uncontrollable factors



Data collection and loading
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• Production data are collected from sensors placed on plants

• One-day-ahead weather data are collected from Forecast.io

• Irradiance data are collected from PVGIS

• Altitude and azimuth of the sun are collected from SunPosition

Lat/lon Lat/lon/ Lat/lon
incl./orient.

PVGISForecast.io SunPosition



Data collection and loading
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 Data gathered from sensors and NWP models will be stored in HBASE on
HDFS

 The distributed approach allows to compute the analysis task on a cluster of
nodes, leading to an improved efficiency, higher scalability and availability.
This task is accomplished relying to Hadoop framework and Mapreduce



Logical design in HBASE
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Four tables:

- Plants

Stores plant data such as the coordinates and the maintenance
operations

- Measure

Stores all data observed by sensors placed on plants

- Predicted

Stores the measures predicted by mining algorithms

- Weather Data

Stores weather data collected from external sources



Logical design in HBASE
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Plants
row key: concat (plantType + plantID)

family_maintenance
row key     timestamp
description

family_info
Lat, Long, altitude*, max_power, model, vendor, 
rated_power, surface*, total_surface*, inclination* 

Measures
row key: concat (plantID + reverse timestamp + measurement type)

external_temp windspeed outputpower

cell_temp winddirection

Irradiance

Predicted Measures
row key: concat (plantID + reverse timestamp + measurement type)

Prediction by algorithm
row key     prediction_algorithm
outputpower



Logical design in HBASE
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Weather Data
row key: concat (geoHash + reverse timestamp + measurementType + servID)

family_collected

row key: server

temperature

cloud_cover

wind_speed

wind_direction

pressure

humidity

precipitations

global_irradiance, 

direct_irradiance

clear_sky_direct_irradiance

diffuse_irradiace

clear_sky_2axes_direct_irradiance

2axes_diffuse_irradiance

2axes_global_irradiance

clear_sky_normal_direct_irradiance

family_predicted

row key: server

temperature

cloud_cover

wind_speed

wind_direction

pressure

humidity

precipitations

global_irradiance, 

direct_irradiance

clear_sky_direct_irradiance

diffuse_irradiace

clear_sky_2axes_direct_irradiance

2axes_diffuse_irradiance

2axes_global_irradiance

clear_sky_normal_direct_irradiance



Data preparation
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• Noisy and missing data (due to faults on sensors) are

corrected thanks to historical measurements stored on other

databases



Data preparation
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• Sensors located on plants can be covered by ostacles or dirt.

• Hence, irradiance measured locally is often lower than irradiance extracted by 
NWP models. 

• Training a model using sensors data and using it for predictions with NWP data 
can lead to inaccurate predictions.

Solution:

- Calculate the percentage of change between monthly NWP irradiance and
irradiance detected by sensors on historical data (same month at the same
hour), to understand how much they differ; 

- Alter, future NWP data are normalized accordingly.



Temporal autocorrelation
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• Issue: Weather data is inherently seasonal / cyclical.
e.g: summer days are featured by an increased irradiance compared to winter days.

• Hence, days that are closer to the prediction day should be taken more in
consideration by the model, in order to make a more reliable prediction.

Idea:
- Usage of directional statistics to calculate the distance dist between the
prediction day (e.g.: tomorrow) and days used in to train the model (historical data)
- Transform distance into similarity (1-dist)
- Incorporate such similarity as a feature (independent variable) in the model

E.g: Prediction for: 25th December (day 360)
dist(360, 5) = 0.03 5th January is closer than 3rd May
dist(360, 122) = 0.34



Spatial autocorrelation
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Issue: The proximity of sensors induces spatial
autocorrelation in data: this violates the assumption of
instances being independent and equally distributed. Usage
of statistical techniques to handle spatial autocorrelation
between plants

•First and very simple solution: include Latitude and Longitude
of the plants (not new: already applied in [Stojanova et al.
2012])

•PCNM technique
Given a matrix of distances between plants, 
calculate eigenvectors that maximize Moran’s I statistic and 
incorporate them in the predictive model;

yi yj

i j

xi xj



Spatial autocorrelation
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•LISA technique
Given a neighborhood matrix of plants, calculate local Moran’s I
statistic for each feature on each plant at each timestamp and 
and incorporate them in the predictive model;

yi yj

i j

xi xj

One final I for each timestamp, 

plant, feature



The learning phase
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- Resilient Propagation (RPROP+) is one of the best general purpose

neural network training methods which use backpropagation

- It performs a direct adaption of weight step based on local gradient

information

- Basic principle of RPROP+ is to eliminate the harmful influence of the

size of the partial derivative on the weight step;

- It considers only the sign of the derivative to indicate the direction of

the weight update.

Already used for renewable energy prediction in [Bessa et al. 2009] 
where, instead of the MSE criterion, MEE, MCC and MEEF criteria 
are used (Parzen window method). 



The learning phase
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Two alternatives: Method 1 (Hourly)

Day expressed as 24 data rows

Hr1,   f1, ...,  fn, KWH

...

Hr24, f1, ... , fn, KWH

Output: prediction for a specific
hour of the next day (possibly
taking in account previous
predictions)



The learning phase
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Two alternatives: Method  2 (Daily)
Considers possible dependence among hours 

Output: prediction of a 24-elements vector
(structured output prediction)

Day expressed as a single data row

Hr1, f1, ... , fn,KWH , ... , Hr24, f1, ...  ,fn , KWH 



The learning phase
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Experimental settings
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• Hourly prediction:

idplant, idbrand, lat, lon, day, daySim, hour, temperature, irradiance, pressure, windspeed, humidity,
icon, dewpoint, windbearing, cloudcover, temperatureI, irradianceI, pressureI, windspeedI, humidityI,
dewpointI, windbearingI, cloudcoverI, pcnm1, pcnm2,,.., pcnmN, kwh

• Daily prediction:

idplant, idbrand, lat, lon, day, daySim hour2, temperature2, irradiance2, pressure2, windspeed2,
humidity2, icon2, dewpoint2, windbearing2, cloudcover2, temperatureI2, irradianceI2, pressureI2,
windspeedI2, humidityI2, dewpointI2, windbearingI2, cloudcoverI2, … , hour20, temperature20,
irradiance20, pressure20, windspeed20, humidity20, icon20, dewpoint20, windbearing20,
cloudcover20, temperatureI20, irradianceI20, pressureI20, windspeedI20, humidityI20, dewpointI20,
windbearingI20, cloudcoverI20, pcnm1, pcnm2,,.., pcnmN, kwh2, kwh3, kwh4, kwh5, kwh6, kwh7,
kwh8, kwh9, kwh10, kwh11, kwh12, kwh13, kwh14, kwh15, kwh16, kwh17, kwh18, kwh19,
kwh20

Space Time

No spatial No temporal Predicted variables 4  *   3   *   2  = 24 settings
Lat Lon No cyclic
LISA Cyclic
PCNM |Space| * |Time| * |Hourly,Daily| 



Experimental results
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Data collected by SunElectrics over the time period between
2012 and 2014

17 photovoltaic plants (in Italy)

Data collected every 15 minutes

Training data: 2012-2013 (731 days) 

Testing data (backpropagation):    2014 (126 days)



Experimental results
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Hourly

No Temporal Non Cyclic Cyclic

RMSE MAE % Impr. RMSE MAE % Impr. RMSE MAE % Impr.

No Spatial 0,121 0,080 16,622 0,120 0,079 17,410 0,121 0,083 16,585

Lat Lon 0,119 0,078 18,254 0,120 0,078 17,443 0,121 0,083 16,674

LISA 0,117 0,076 19,617 0,118 0,077 18,955 0,117 0,077 19,510

PCNM 0,120 0,079 17,254 0,123 0,080 15,796 0,124 0,081 15,003

Daily

No Temporal Non Cyclic Cyclic

RMSE MAE % Impr. RMSE MAE % Imp RMSE MAE % Imp

No Spatial 0,111 0,068 23,966 0,109 0,068 24,810 0,108 0,066 26,095

Lat Lon 0,109 0,067 25,369 0,111 0,069 23,915 0,106 0,065 27,401

LISA 0,109 0,067 24,858 0,110 0,067 24,594 0,107 0,066 26,760

PCNM 0,109 0,068 24,889 0,109 0,067 25,445 0,107 0,066 26,521

Persistence

RMSE MAE

0,146 0,085



Experimental results
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Conclusions
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• Spatial and temporal features help to achieve a better prediction

• Prediction is better in case of structured outputs (daily settings), probably
because of the implicit consideration of the dependance of the predictions at
consecutive hours

Ongoing work:

• Incorporate autocorrelation measures in the update rule of the algorithm

• Consider other predictive approaches

• Evaluate the system on other datasets
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Questions?


