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Motivation
STUDIES ANALYZING COSTS OVER TIME HAVE SHOWN THAT ADVERSE DRUG
REACTIONS (ADRS) COST OVER $136 BILLION A YEAR

ONE SIGNIFICANT CAUSE OF ADRS ARE DRUG-DRUG INTERACTIONS (DDIS) 
WHICH GREATLY AFFECT OLDER ADULTS DUE TO THE MULTIPLE DRUGS THEY
ARE TAKING
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Our solution

We present LIDDI – a LInked Drug-Drug Interactions 
nanopublication-based RDF dataset with trusty URIs

LIDDI combines data from various disparate sources, 
always aware of their provenance due to differences in 
individual quality and overall confidence 
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Bonus features

LIDDI provides the linking components to branch from 
DDIs into individual properties of each drug via 
Drugbank and UMLS, as well as mappings between all 
selected sources
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Why nanopublications and trusty URIs?

Consisting of an assertion graph with triples expressing 
an atomic statement, a provenance graph reporting how 
this assertion came about, and a publication information 
graph that provides meta-data for the nanopublication

We want URIs that are verifiable, immutable, and 
permanent. Trusty URIs come with the possibility to 
verify with 100% confidence that a retrieved file 
represents the correct and original state of the resource
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Sample DDIs

Sample DDI w event

Drug 1: rosuvastatin
Drug 2: caspofungin

Event: rhabdomyolysis

Sample DDI no event

Drug 1: rosuvastatin
Drug 2: caspofungin
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Dataset overview

8 data sources covering 345 drugs and 10 adverse events

LIDDI
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Data Schema: DDI

We use drug-drug-interaction from SIO and PROV for provenance
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Data Schema: Drug and mappings

Contains all mappings between sources
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How do we derive the event part of a DDI

Used to annotate clinical text at Stanford [1] and for 
the DDI descriptions
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[1] Iyer SV, Harpaz R, LePendu P, Bauer-Mehren A, Shah NH. Mining clinical text for signals of adverse drug-drug interactions. 
J Am Med Inform Assoc. 2014;21(2):353-362.



LIDDI: DDIs from HER [1]

5,983 DDI-Event (x2)
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LIDDI: DDIs from public sources
21,580 DDI-Event (x2)

2,130 DDI-Event (x2)

871 DDI-Event (x2)
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LIDDI: DDIs generated by prediction methods (1)

[3] Tatonetti NP, Fernald GH, Altman RB. A novel signal detection algorithm for identifying hidden drug-drug interactions in adverse event reports. 
J Am Med Inform Assoc 2012;19:79–85.
[4] Avillach P, Dufour JC, Diallo G, Salvo F, Joubert M, Thiessard F, Mougin F, Trifiro G, Fourrier-Reglat A, Pariente A, Fieschi M. Design and validation of 
an automated method to detect known adverse drug reactions in MEDLINE: a contribution from the EU-ADR project. J Am Med Inform Assoc. 2013;20(3):446–452. 

74 DDI-Event (x2) [4]

16,145 DDI-Event (x2) [3]
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LIDDI: DDIs generated by prediction methods (2)
4,185 DDI no event (x2) [5]

112 DDI no event (x2) [6]

684 DDI no event [7]
[5] Gottlieb A, Stein GY, Oron Y, et al. INDI: a computational framework 
for inferring drug interactions and their associated recommendations. 
Mol Syst Biol 2012;8:592.
[6] Vilar S, Uriarte E, Santana L, et al. Similarity-based modeling in 
large-scale prediction of drug-drug interactions. Nat Protocols. 2014 
09//print;9(9):2147-63.
[7] Cami A, Manzi S, Arnold A, Reis BY. Pharmacointeraction Network 
Models Predict Unknown Drug-Drug Interactions. PLoS ONE. 
2013;8(4):e61468.
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Dataset Statistics

98,085 nanopublications, 392,340 total graphs, 
2,051,959 triples totaling 723MB in n-quad 
representation
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Usages of LIDDI

Prioritization of Drug-Drug Interactions found in the 
EHR
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Future Work

Over 1,200 drugs are being mapped to add to this resource

Add more drugs to LIDDI

Add more data sources

We have identified and started mapping 3 new data sources

Some sources provide statistical confidence values for their DDIs

Add additional information to the DDIs
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QUESTIONS?
THANK YOU
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SPARQL endpoint:
http://liddi.stanford.edu:8890/sparql

Faceted Browser:
http://liddi.stanford.edu:8890/fct

Get:
http://np.inn.ac/RA7SuQ0e661LJdKpt5EOS2DKykf1ht9LFmNaZtFSDMrXg

jmbanda@stanford.edu

@drjmbanda
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