Optimal aggregation of affine estimators

author: Joseph Salmon, Denis Diderot University - Paris 7
published: Aug. 2, 2011,   recorded: July 2011,   views: 2997
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We consider the problem of combining a (possibly uncountably infinite) set of affine estimators in non-parametric regression model with heteroscedastic Gaussian noise. Focusing on the exponentially weighted aggregate, we prove a PAC-Bayesian type inequality that leads to sharp oracle inequalities in discrete but also in continuous settings. The framework is general enough to cover the combinations of various procedures—such as the least square regression, the kernel ridge regression, the shrinkage estimators, etc.—used in the literature on statistical inverse problems. As a consequence, we show that the proposed aggregate provides an adaptive estimator in the exact minimax sense without neither discretizing the range of tuning parameters nor splitting the set of observations. We also illustrate numerically the good performance achieved by the exponentially weighted aggregate.

See Also:

Download slides icon Download slides: colt2011_salmon_optimal_01.pdf (572.5 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: