Margin and Radius Based Multiple Kernel Learning

author: Huyen Thi Thanh Do, Geneva Artificial Intelligence Laboratory, University of Geneva
published: Oct. 20, 2009,   recorded: September 2009,   views: 2693

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

A serious drawback of kernel methods, and Support Vector Machines (SVM) in particular, is the difficulty in choosing a suitable kernel function for a given dataset. One of the approaches proposed to address this problem is Multiple Kernel Learning (MKL) in which several kernels are combined adaptively for a given dataset. Many of the existing MKL methods use the SVM objective function and try to find a linear combination of basic kernels such that the separating margin between the classes is maximized. However, these methods ignore the fact that the theoretical error bound depends not only on the margin, but also on the radius of the smallest sphere that contains all the training instances. We present a novel MKL algorithm that optimizes the error bound taking account of both the margin and the radius. The empirical results show that the proposed method compares favorably with other state-of-the-art MKL methods.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: