Fast Clustering based on Kernel Density Estimation

author: Alexander Hinneburg, Institute for Informatics, Martin-Luther University
published: Oct. 8, 2007,   recorded: September 2007,   views: 1450
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

The Denclue algorithm employs a cluster model based on kernel density estimation. A cluster is defined by a local maximum of the estimated density function. Data points are assigned to clusters by hill climbing, i.e. points going to the same local maximum are put into the same cluster. A disadvantage of Denclue 1.0 is, that the used hill climbing may make unnecessary small steps in the beginning and never converges exactly to the maximum, it just comes close. We introduce a new hill climbing procedure for Gaussian kernels, which adjusts the step size automatically at no extra costs. We prove that the procedure converges exactly towards a local maximum by reducing it to a special case of the expectation maximization algorithm. We show experimentally that the new procedure needs much less iterations and can be accelerated by sampling based methods with sacrificing only a small amount of accuracy.

See Also:

Download slides icon Download slides: ida07_ljubljana_hinneburg_alexander.ppt (1.0 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: