SYRql: A Dataflow Language for Large Scale Processing of RDF Data
published: Dec. 19, 2014, recorded: October 2014, views: 1910
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
The recent big data movement resulted in a surge of activity on layering declarative languages on top of distributed computation platforms. In the Semantic Web realm, this surge of analytics languages was not reflected despite the significant growth in the available RDF data. Consequently, when analysing large RDF datasets, users are left with two main options: using SPARQL or using an existing non-RDF-specific big data language, both with its own limitations. The pure declarative nature of SPARQL and the high cost of evaluation can be limiting in some scenarios. On the other hand, existing big data languages are designed mainly for tabular data and, therefore, applying them to RDF data results in verbose, unreadable, and sometimes inefficient scripts. In this paper, we introduce SYRql, a dataflow language designed to process RDF data at a large scale. SYRql blends concepts from both SPARQL and existing big data languages. We formally define a closed algebra that underlies SYRql and discuss its properties and some unique optimisation opportunities this algebra provides. Furthermore, we describe an implementation that translates SYRql scripts into a series of MapReduce jobs and compare the performance to other big data processing languages.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: