Effective Multi-Label Active Learning for Text Classification

author: Bishan Yang, Peking University
published: Sept. 14, 2009,   recorded: June 2009,   views: 5406
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Labeling text data is quite time-consuming but essential for automatic text classification. Especially, manually creating multiple labels for each document may become impractical when a very large amount of data is needed for training multi-label text classifiers. To minimize the human-labeling efforts, we propose a novel multi-label active learning approach which can reduce the required labeled data without sacrificing the classification accuracy. Traditional active learning algorithms can only handle single-label problems, that is, each data is restricted to have one label. Our approach takes into account the multi-label information, and select the unlabeled data which can lead to the largest reduction of the expected model loss. Specifically, the model loss is approximated by the size of version space, and the reduction rate of the size of version space is optimized with Support Vector Machines (SVM). An effective label prediction method is designed to predict possible labels for each unlabeled data point, and the expected loss for multi-label data is approximated by summing up losses on all labels according to the most confident result of label prediction. Experiments on several real-world data sets (all are publicly available) demonstrate that our approach can obtain promising classification result with much fewer labeled data than state-of-the-art methods.

See Also:

Download slides icon Download slides: kdd09_yang_emlaltc_01.ppt (1.7 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: