PNP: Fast Path Ensemble Method for Movie Design

author: Danai Koutra, Department of Electrical Engineering and Computer Science, University of Michigan
published: Oct. 9, 2017,   recorded: August 2017,   views: 994

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography


How can we design a product or movie that will attract, for example, the interest of Pennsylvania adolescents or liberal newspaper critics? What should be the genre of that movie and who should be in the cast? In this work, we seek to identify how we can design new movies with features tailored to a specific user population. We formulate the movie design as an optimization problem over the inference of user-feature scores and selection of the features that maximize the number of attracted users. Our approach, PNP, is based on a heterogeneous, tripartite graph of users, movies and features (e.g., actors, directors, genres), where users rate movies and features contribute to movies. We learn the preferences by leveraging user similarities defined through different types of relations, and show that our method outperforms state-of-the-art approaches, including matrix factorization and other heterogeneous graph-based analysis. We evaluate PNP on publicly available real-world data and show that it is highly scalable and effectively provides movie designs oriented towards different groups of users, including men, women, and adolescents.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: