Traffic System Anomaly Detection using Spatiotemporal Pattern Networks

author: Anuj Sharma, Department of Civil, Construction and Environmental Engineering (CCEE), Iowa State University
published: Dec. 1, 2017,   recorded: August 2017,   views: 732
Categories

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Traffic dynamics in the urban interstate system are critical in terms of highway safety and mobility. This paper proposes a systematic data mining technique to detect traffic system-level anomalies in a batch-processing fashion. Built on the concepts of symbolic dynamics, a spatiotemporal pattern network (STPN) architecture is developed to capture the system characteristics. This novel spatiotemporal graphical modeling approach is shown to be able to extract salient time series features and discover spatial and temporal patterns for a traffic system. An information-theoretic metric is used to quantify the causal relationships between sub-systems. By comparing the structural similarity of the information-theoretic metrics of the STPNs learnt from each day, a day with anomalous system characteristics can be identified. A case study is conducted on an urban interstate in Iowa, USA, with 11 roadside radar sensors collecting 20-second resolution speed and volume data. After applying the proposed methods on one-month data (Feb. 2017), several system-level anomalies are detected. The potential causes that include inclement weather condition and non-recurring congestion are also verified to demonstrate the efficacies of the proposed technique. Compared to the traditional predefined performance measures for the traffic systems, the proposed framework has advantages in capturing spatiotemporal features in a fast and scalable manner.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: