View order







Type of content

 
 
 
 
 
 

Language

 
 
 
 
 
 
 

Year

From:
To:

 


...Search a Keyword

 
 
event header image

MIT 2.003J / 1.053J Dynamics and Control I - Fall 2007

This class is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics include kinematics; force-momentum formulation for systems of particles and rigid bodies in planar motion; work-energy concepts; virtual displacements and virtual work; Lagrange's equations for systems of particles and rigid bodies in planar motion; linearization of equations of motion; linear stability analysis of mechanical systems; free and forced vibration of linear multi-degree of freedom models of mechanical systems; and matrix eigenvalue problems. The class includes an introduction to numerical methods and using MATLABĀ® to solve dynamics and vibrations problems.

This version of the class stresses kinematics and builds around a strict but powerful approach to kinematic formulation which is different from the approach presented in Spring 2007. Our notation was adapted from that of Professor Kane of Stanford University.

Recommended Citation

For any use or distribution of these materials, please cite as follows:

Sanjay Sarma, Nicholas Makris, Yahya Modarres-Sadeghi, and Peter So, course materials for 2.003J / 1.053J Dynamics and Control I, Fall 2007. MIT OpenCourseWare (http://ocw.mit.edu), Massachusetts Institute of Technology. Downloaded on [DD Month YYYY].

Course Homepage: 2.003J / 1.053J Dynamics and Control I Fall 2007

Course features at MIT OpenCourseWare page:

Categories

Write your own review or comment:

make sure you have javascript enabled or clear this field: