Empricial Study of Cluster Evaluation Metrics
published: Jan. 19, 2010, recorded: December 2009, views: 4629
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
A wide range of abstract characteristics of partitions have been proposed for cluster evaluation. We empirically evaluated the performance of these metrics for flow cytometry data and found that the set-matching metrics perform closest to human.
Clustering is an increasingly popular module in data processing applications. Many clustering algorithms have been developed and many more are anticipated to emerge in the future. Thus, methods for assessing the performance of a clustering algorithms are in great demand. Such methods assess the performance of a clustering algorithm by computing a quality score of the solution against a ground truth partition, usually designed by a human expert. A wide range of these criterion have been proposed [9]. Evaluating clustering algorithms heavily relies on the chosen quality score however, it is not practical to study the performance of these metrics in a domain-independent way [3]. In this paper we aim to empirically evaluate the available metrics to find the best metric for comparing clustering solutions against ground truth partitions for flow cytometry (FCM) applications. This work was motivated in part by the challenges we faced in choosing the best clustering comparison metric for the FlowCap project. FlowCap is an international open project designed to provide an objective way to compare and evaluate FCM data clustering methods, and also to establish guidance about appropriate use and application of these methods (for more information visit http://flowcap.flowsite.org/).
See Also:
Download slides: nipsworkshops09_khodabakhshi_esc_01.pdf (1013.2 KB)
Download slides: nipsworkshops09_khodabakhshi_esc_01.ppt (1.7 MB)
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: