Super-Linear Convergence of Dual Augmented Lagrangian Algorithm for Sparse Learning

author: Ryota Tomioka, Toyota Technological Institute at Chicago
published: Jan. 19, 2010,   recorded: December 2009,   views: 7403
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We analyze the convergence behaviour of a recently proposed algorithm for sparse learning called Dual Augmented Lagrangian (DAL). We theoretically analyze under some conditions that DAL converges super-linearly in a non-asymptotic and global sense. We experimentally confirm our analysis in a large scale ℓ1-regularized logistic regression problem and compare the efficiency of DAL algorithm to existing algorithms.

See Also:

Download slides icon Download slides: nipsworkshops09_tomioka_slc_01.pdf (617.0 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: