Beyond Stochastic Gradient Descent

author: Francis R. Bach, INRIA - SIERRA project-team
published: Aug. 26, 2013,   recorded: July 2013,   views: 7118
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Many machine learning and signal processing problems are traditionally cast as convex optimization problems. A common difficulty in solving these problems is the size of the data, where there are many observations ("large n") and each of these is large ("large p"). In this setting, online algorithms which pass over the data only once, are usually preferred over batch algorithms, which require multiple passes over the data. In this talk, I will present several recent results, showing that in the ideal in finite-data setting, online learning algorithms based on stochastic approximation should be preferred, but that in the practical finite-data setting, an appropriate combination of batch and online algorithms leads to unexpected behaviors, such as a linear convergence rate with an iteration cost similar to stochastic gradient descent. (joint work with Nicolas Le Roux, Eric Moulines and Mark Schmidt)

See Also:

Download slides icon Download slides: roks2013_bach_optimization_01.pdf (333.6 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: