In situ comparison of hybridization properties of nanografted and self-assembled DNA monolayers

author: Christian Grunwald, ELETTRA - Sincrotrone Trieste
published: Feb. 12, 2008,   recorded: October 2007,   views: 3503

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

Using a conventional AFM and nano-patterned low and high density single stranded DNA SAMs we have investigated the elastic response of surface tethered DNA molecules after various hybridization times and under different loading forces. Upon hybridization, as expected, only for the low density single stranded DNA SAM a transition to the “standing up” phase is seen. We find that high density DNA SAMs are lacking the capability to hybridize not because of density but because of inherent disorder which is reflected by their low DNA SAM height. Nanografting is known to increase both packing density and molecular order. Therefore we have performed patch-in-a-patch experiments to nano-pattern a conventional low density single stranded DNA SAM with 2 subsequent nanografting processes. First a reference area of HS-C6-OH molecules was created into which in a second process single stranded DNA was nanografted. Thereby an accurate in situ comparison under equivalent conditions between conventional DNA SAMs and nanografted DNA patches becomes accessible. Side by side height and compression measurements can provide valuable biophysical insights on the organization of DNA molecules close to a solid interface e.g. discriminating between molecular order and density effects.

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Reviews and comments:

Comment1 Ghulam Murtaza, December 13, 2009 at 3:18 p.m.:

Good

Write your own review or comment:

make sure you have javascript enabled or clear this field: