HEADY: News Headline Abstraction Through Event Pattern Clustering

author: Daniele Pighin, Google, Inc.
published: Oct. 2, 2013,   recorded: August 2013,   views: 2654
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

This paper presents HEADY: a novel, ab- stractive approach for headline generation from news collections. From a web-scale corpus of English news, we mine syntactic patterns that a Noisy-OR model generalizes into event descriptions. At inference time, we query the model with the patterns observed in an unseen news collection, identify the event that better captures the gist of the collection and retrieve the most appropriate pattern to generate a headline. HEADY improves over a state-of-the- art open-domain title abstraction method, bridging half of the gap that separates it from extractive methods using human-generated titles in manual evaluations, and performs comparably to human-generated headlines as evaluated with ROUGE.

See Also:

Download slides icon Download slides: acl2013_pighin_clustering_01.pdf (3.3 MB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: