Flexible and efficient Gaussian process models
author: Edward Snelson,
University College London
published: Feb. 25, 2007, recorded: June 2006, views: 4837
published: Feb. 25, 2007, recorded: June 2006, views: 4837
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
I will briefly describe our work on the sparse pseudo-input Gaussian process (SPGP), where we refine the sparse approximation by selecting `pseudo-inputs' using gradient methods. I will then describe several extensions to this framework. Firstly we incorporate supervised dimensionality reduction to deal with high dimensional input spaces. Secondly we develop a version of the SPGP that can handle input-dependent noise. These extensions allow GP methods to be applied to a wider variety of modelling tasks than previously possible.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: