On Greedy Maximization of Entropy
published: Sept. 27, 2015, recorded: July 2015, views: 1895
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
Submodular function maximization is one of the key problems that arise in many machine learning tasks. Greedy selection algorithms are the proven choice to solve such problems, where prior theoretical work guarantees (1 - 1/e) approximation ratio. However, it has been empirically observed that greedy selection provides almost optimal solutions in practice. The main goal of this paper is to explore and answer why the greedy selection does significantly better than the theoretical guarantee of (1 - 1/e). Applications include, but are not limited to, sensor selection tasks which use both entropy and mutual information as a maximization criteria. We give a theoretical justification for the nearly optimal approximation ratio via detailed analysis of the curvature of these objective functions for Gaussian RBF kernels.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: