Reconciling "priors'' & "priors" without prejudice?

author: Pierre Machart, INRIA Rennes
published: Nov. 7, 2014,   recorded: January 2014,   views: 1660
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

There are two major routes to address linear inverse problems. Whereas regularization-based approaches build estimators as solutions of penalized regression optimization problems, Bayesian estimators rely on the posterior distribution of the unknown, given some assumed family of priors. While these may seem radically different approaches, recent results have shown that, in the context of additive white Gaussian denoising, the Bayesian conditional mean estimator is always the solution of a penalized regression problem. The contribution of this paper is twofold. First, we extend the additive white Gaussian denoising results to general linear inverse problems with colored Gaussian noise. Second, we characterize conditions under which the penalty function associated to the conditional mean estimator can satisfy certain popular properties such as convexity, separability, and smoothness. This sheds light on some tradeoff between computational efficiency and estimation accuracy in sparse regularization, and draws some connections between Bayesian estimation and proximal optimization.

See Also:

Download slides icon Download slides: machine_machart_without_prejudice_01.pdf (168.6 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: