Multi-task feature learning

author: Andreas Argyriou, École Centrale Paris
published: Feb. 25, 2007,   recorded: July 2006,   views: 7159
Categories

Slides

Related content

Report a problem or upload files

If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.
Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Lecture popularity: You need to login to cast your vote.
  Delicious Bibliography

Description

We present a method for learning a low-dimensional representation which is shared across a set of multiple related tasks. The method builds upon the well-known 1-norm regularization problem using a new regularizer which controls the number of learned features common for all the tasks. We show that this problem is equivalent to a convex optimization problem and develop an iterative algorithm for solving it.

See Also:

Download slides icon Download slides: oh06_argyriou_mtfl_01.pdf (92.3 KB)


Help icon Streaming Video Help

Link this page

Would you like to put a link to this lecture on your homepage?
Go ahead! Copy the HTML snippet !

Write your own review or comment:

make sure you have javascript enabled or clear this field: