Regularizing RNNs by Stabilizing Activations
published: May 27, 2016, recorded: May 2016, views: 2816
Slides
Related content
Report a problem or upload files
If you have found a problem with this lecture or would like to send us extra material, articles, exercises, etc., please use our ticket system to describe your request and upload the data.Enter your e-mail into the 'Cc' field, and we will keep you updated with your request's status.
Description
We stabilize the activations of Recurrent Neural Networks (RNNs) by penalizing the squared distance between successive hidden states' norms. This penalty term is an effective regularizer for RNNs including LSTMs and IRNNs, improving performance on character-level language modeling and phoneme recognition, and outperforming weight noise and dropout. We achieve competitive performance (18.6\% PER) on the TIMIT phoneme recognition task for RNNs evaluated without beam search or an RNN transducer. With this penalty term, IRNN can achieve similar performance to LSTM on language modeling, although adding the penalty term to the LSTM results in superior performance. Our penalty term also prevents the exponential growth of IRNN's activations outside of their training horizon, allowing them to generalize to much longer sequences.
Link this page
Would you like to put a link to this lecture on your homepage?Go ahead! Copy the HTML snippet !
Write your own review or comment: